在概述最新研发的微型流化床反应分析(micro-fluidized bed reaction analysis,MFBRA)方法与应用的基础上,应用该方法进一步研究了半焦-CO2、半焦-水蒸气等温气化反应动力学,并与热重分析(thermogravimet-ric analyzer,TGA)求取的气化...在概述最新研发的微型流化床反应分析(micro-fluidized bed reaction analysis,MFBRA)方法与应用的基础上,应用该方法进一步研究了半焦-CO2、半焦-水蒸气等温气化反应动力学,并与热重分析(thermogravimet-ric analyzer,TGA)求取的气化反应动力学数据比较。在最小化气体扩散的实验条件下,利用MFBRA和TGA测定求算的半焦-CO2、半焦-水蒸气气化反应在受反应动力学控制的低温段的活化能非常接近,说明了MFBRA对等温气化反应分析的适用性和可靠性。实验研究还发现:半焦-CO2、半焦-水蒸气气化反应在MFBRA中受反应动力学控制的温度范围较在TGA中明显宽,且在具有明显扩散影响的高温段通过MFBRA测定的半焦-CO2气化反应表观活化能明显大于利用TGA测定的值,表明在MFBRA中受到的气体扩散抑制效应较小。展开更多
Zhtmdong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to invest...Zhtmdong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the phy- sicochemical properties and gasification reactivity of the ultrafme semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactiv- ity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasifica- tion temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Conse- quently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasitiers are rec- laimed and reused for the gasification process.展开更多
文摘在概述最新研发的微型流化床反应分析(micro-fluidized bed reaction analysis,MFBRA)方法与应用的基础上,应用该方法进一步研究了半焦-CO2、半焦-水蒸气等温气化反应动力学,并与热重分析(thermogravimet-ric analyzer,TGA)求取的气化反应动力学数据比较。在最小化气体扩散的实验条件下,利用MFBRA和TGA测定求算的半焦-CO2、半焦-水蒸气气化反应在受反应动力学控制的低温段的活化能非常接近,说明了MFBRA对等温气化反应分析的适用性和可靠性。实验研究还发现:半焦-CO2、半焦-水蒸气气化反应在MFBRA中受反应动力学控制的温度范围较在TGA中明显宽,且在具有明显扩散影响的高温段通过MFBRA测定的半焦-CO2气化反应表观活化能明显大于利用TGA测定的值,表明在MFBRA中受到的气体扩散抑制效应较小。
基金the support of the National Natural Science Foundation of China(No.21306193)the International Science&Technology Cooperation Program of China(No.2014DFG61680)
文摘Zhtmdong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the phy- sicochemical properties and gasification reactivity of the ultrafme semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactiv- ity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasifica- tion temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Conse- quently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasitiers are rec- laimed and reused for the gasification process.