Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the foreca...Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.展开更多
基金Supported by the National Natural Science Foundation of China (60934007, 61074060, 61104078)the Research and Innovation Project of Shanghai Education Commission (11CXY08)the State Key Laboratory of Synthetical Automation forProcess Industries
文摘Soft-sensing is widely used in industrial applications. The traditional soft-sensing structure is open-loop without correction mechanism. If the working condition is changed or there is unknown disturbance, the forecast result of soft-sensing model may be incorrect. In order to obtain accurate values, it is necessary to carry out online correction. In this paper, a semiclosed-loop framework (SLF) is proposed to establish a soft-sensing approach, which estimates the input variables in the next moment by a prediction model and calibrates the output variables by a compensation model. The experimental results show that the proposed method has better prediction accuracy and robustness than other open-loop models.