In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modem large rivers in direction. Such faults were usu...In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modem large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic-early Lower Cretaceous Taebo System, and the Upper Cretaceous-Paleocene ( Chonjaebong, Hongwon, Jaedok Series). The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myongchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene (e. g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc). The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-beating beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.展开更多
Using the GPS velocity data from 27 stations around the Eastern Kunlun fault as constraints, we first invert the slip velocities of the Eastern Kuniun fault, the north boundary fault of the Qaidam basin, the Mani-Yush...Using the GPS velocity data from 27 stations around the Eastern Kunlun fault as constraints, we first invert the slip velocities of the Eastern Kuniun fault, the north boundary fault of the Qaidam basin, the Mani-Yushu fault and the Margai Caka fault before the Kekexili Ms 8.1 earthquake with a 3-D elastic half-space dislocation model. The deformation field calculated from the slip movement of these faults can be considered the deformation background field of the earthquake. Based on the deformation background field with tectonic implications, we have obtained the strain field and earthquake moment accumulation field. The results show that there are two obvious high moment accumulation rate regions, one of which is the Dongdatan- Xidatan segment of the Eastern Kuniun fault where the Ms8.1 earthquake occurred in 2001.展开更多
Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts...Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts etc. And it is especially remarkable in semi-humid and semi-arid region. In this paper, the impacts of climate change on the hydrological cycle were analyzed for the Hai River Basin, a semi-humid and semi-arid basin and also the water receiving area of the middle route of South-to-North Water Diversion project. Meanwhile it is the most vulnerable to climate change. Firstly, the linear regression and Mann-Kendall non-parametric test methods were used to analyze the change characteristics of the hydrological and meteorological elements for the period from 1960 to 2009. The results show a significant increase in temperature, while precipitation decreases slightly, and runoff decreases drastically over the past 50 years. Secondly, the applicability of SWAT (Soil and Water Assessment Tool) model based on the DEM (Digital Elevation Model), land use and soil type was verified in the basin. Results show the model performs well in this basin. Furthermore, the water balance model, Fu's theory and Koichiro's theory were used to calculate the actual evaporation, comparing to the simulated actual evaporation by SWAT model to validate the result for the lack of large-scale observed evaporation datasets. Possible reasons were also analyzed to explore the reasonable factor for the decline of the runoff. Finally the precipitation, temperature, runoff and evaporation response processes based on the IPCC AR4 multi-mode climate models and the verified SWAT model under different GHG emission scenarios (SRES-A2, AIB and B1) in the 21st century were discussed in three time periods: 2020s (2011-2040), 20S0s (2041-2070), 2080s (2071-2099). Results show that there are systematic positive trends for precipitation and temperature while the trends for runoff and evaporation will differ among sub-areas. The results will offer some references for adaptive water management in a changing environment, also including adaptation of a cross-basin water transfer project.展开更多
文摘In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modem large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic-early Lower Cretaceous Taebo System, and the Upper Cretaceous-Paleocene ( Chonjaebong, Hongwon, Jaedok Series). The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myongchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene (e. g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc). The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-beating beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.
基金sponsored by the National Natural Science Foundation (40674055),China
文摘Using the GPS velocity data from 27 stations around the Eastern Kunlun fault as constraints, we first invert the slip velocities of the Eastern Kuniun fault, the north boundary fault of the Qaidam basin, the Mani-Yushu fault and the Margai Caka fault before the Kekexili Ms 8.1 earthquake with a 3-D elastic half-space dislocation model. The deformation field calculated from the slip movement of these faults can be considered the deformation background field of the earthquake. Based on the deformation background field with tectonic implications, we have obtained the strain field and earthquake moment accumulation field. The results show that there are two obvious high moment accumulation rate regions, one of which is the Dongdatan- Xidatan segment of the Eastern Kuniun fault where the Ms8.1 earthquake occurred in 2001.
基金supported by National Basic Research Program of China(2010CB428406)the National Natural Science Foundation of China (No. 41071025/40730632)MWR Commonweal Project (200801001)
文摘Climate change will lead to a significant alteration in the temporal and spatial pattern variation in the regional hydrological cycle, and the subsequent lack of water, environmental deterioration, floods and droughts etc. And it is especially remarkable in semi-humid and semi-arid region. In this paper, the impacts of climate change on the hydrological cycle were analyzed for the Hai River Basin, a semi-humid and semi-arid basin and also the water receiving area of the middle route of South-to-North Water Diversion project. Meanwhile it is the most vulnerable to climate change. Firstly, the linear regression and Mann-Kendall non-parametric test methods were used to analyze the change characteristics of the hydrological and meteorological elements for the period from 1960 to 2009. The results show a significant increase in temperature, while precipitation decreases slightly, and runoff decreases drastically over the past 50 years. Secondly, the applicability of SWAT (Soil and Water Assessment Tool) model based on the DEM (Digital Elevation Model), land use and soil type was verified in the basin. Results show the model performs well in this basin. Furthermore, the water balance model, Fu's theory and Koichiro's theory were used to calculate the actual evaporation, comparing to the simulated actual evaporation by SWAT model to validate the result for the lack of large-scale observed evaporation datasets. Possible reasons were also analyzed to explore the reasonable factor for the decline of the runoff. Finally the precipitation, temperature, runoff and evaporation response processes based on the IPCC AR4 multi-mode climate models and the verified SWAT model under different GHG emission scenarios (SRES-A2, AIB and B1) in the 21st century were discussed in three time periods: 2020s (2011-2040), 20S0s (2041-2070), 2080s (2071-2099). Results show that there are systematic positive trends for precipitation and temperature while the trends for runoff and evaporation will differ among sub-areas. The results will offer some references for adaptive water management in a changing environment, also including adaptation of a cross-basin water transfer project.