期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
1
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
下载PDF
一种增量迭代方式下的特征向量聚类方法 被引量:1
2
作者 黄锐 桑农 +2 位作者 刘乐元 罗大鹏 唐奇伶 《模式识别与人工智能》 EI CSCD 北大核心 2010年第3期320-326,共7页
采用一种数据组织方式,提出一种特征向量聚类方法.首先选取特征空间中一些容易聚类的高密度数据点作为初始种子集合,并对其进行聚类.然后从剩下的数据点中选取种子集合的所有k近邻数据点,通过半监督判别式分析方法将当前种子集合及其k... 采用一种数据组织方式,提出一种特征向量聚类方法.首先选取特征空间中一些容易聚类的高密度数据点作为初始种子集合,并对其进行聚类.然后从剩下的数据点中选取种子集合的所有k近邻数据点,通过半监督判别式分析方法将当前种子集合及其k近邻数据投影到一个新的投影空间中,在该空间中对这些数据点再进行聚类,得到新的聚类结果,并将这些k近邻数据添加到当前种子集合中.通过迭代上述步骤,当种子集合的k近邻数据为空集时,算法结束.实验表明,该聚类方法优于经典的K-means、均值漂移、谱聚类等算法. 展开更多
关键词 特征向量 聚类 半监督判别式分析 均值漂移
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部