图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行...图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.展开更多
针对新生儿疼痛表情识别任务中由于有类别标签样本数量不足而导致分类准确率不高的问题,提出了一种基于图的半监督深度学习(Graph-based Semi-supervised Deep Learning,GSDL)方法。首先,使用训练集中少量有类别标签的样本对深度神经网...针对新生儿疼痛表情识别任务中由于有类别标签样本数量不足而导致分类准确率不高的问题,提出了一种基于图的半监督深度学习(Graph-based Semi-supervised Deep Learning,GSDL)方法。首先,使用训练集中少量有类别标签的样本对深度神经网络模型进行初步训练,得到初始模型;然后,利用初始模型提取有类别标签样本与无类别标签样本的特征向量,并使用提取的特征向量构建一个邻接矩阵,进而构建一个图,在构建的图上通过标签传播算法推测出无类别标签样本的伪标签;最后,使用所有样本及其标签对深度神经网络模型进行微调,得到最终的新生儿疼痛表情识别分类模型。在新生儿疼痛表情数据集上的实验结果表明,在使用相同数量的有类别标签样本情况下,文中提出的GSDL模型的分类准确率优于传统的有监督深度学习模型,也高于现有的半监督深度学习模型(Mean-Teachers,MT),验证了GSDL方法在新生儿疼痛表情识别中的有效性。展开更多
源自中枢神经系统活动的脑电信号具有不易伪装性而被广泛应用于情感识别领域,但非稳态及微弱等特性导致其存在个体差异性。为适应不同被试之间的数据分布差异,迁移学习被引入脑电情感识别领域。但现有方法一方面未实现域适应与标记估计...源自中枢神经系统活动的脑电信号具有不易伪装性而被广泛应用于情感识别领域,但非稳态及微弱等特性导致其存在个体差异性。为适应不同被试之间的数据分布差异,迁移学习被引入脑电情感识别领域。但现有方法一方面未实现域适应与标记估计的有效协同,另一方面仅关注识别精度与数据分布忽略了共享子空间的属性发掘。针对上述问题,本研究提出一种联合双映射域适应与图半监督标签估计的脑电情感状态识别方法。通过在SEED-IV情感数据集进行跨被试情感识别效果验证。该数据集为15名受试者在3个不同时段(Session1,Session2,Session3)播放具有明显情感倾向的影片进行脑电数据采集。结果显示,所提出的方法对SEED-IV中3个时段数据的平均识别精度(77.7%、78.5%、79.6%)均优于现有多种迁移模型,较经典的联合域适应(JDA)方法的平均识别精度有大幅提升(Session2:53.7%vs 78.5%);较新近提出的模型也有最低8.9%(Session2 vs MEKT)的精度提升。此外,通过特征重要性的角度对共享子空间蕴含的脑电情感激活模式进行发掘,并结合频段权重平均结果显示,相较于其他4个频段γ频段具有较高的重要性,并通过单向方差分析验证了与其余4个频段的显著性差异(P<0.05);脑地形图呈现的结果发现,(中央)顶叶脑区权重高于其他脑区。所进行的研究对于脑电情感激活模式的学习分析提供了参考。展开更多
在机器学习领域,半监督学习作为一种有力工具吸引了越来越多的关注,其利用少量带标签数据和大量无标签数据进行有效学习,其中基于图的半监督学习方法因其优雅的数学形式和良好的学习性能而引起更广泛的研究.针对现有基于图的半监督学习...在机器学习领域,半监督学习作为一种有力工具吸引了越来越多的关注,其利用少量带标签数据和大量无标签数据进行有效学习,其中基于图的半监督学习方法因其优雅的数学形式和良好的学习性能而引起更广泛的研究.针对现有基于图的半监督学习方法所存在的模型参数敏感和数据判别信息不充分等问题,提出一种稀疏特征空间嵌入正则化(Sparse Feature Space embedding Regularization,SFSR)半监督学习框架,其主要思想为:首先分别将原始数据嵌入到线性特征空间,然后利用特征空间嵌入投影点集来稀疏重构原始数据,随后在由原始数据线性张成的标签空间通过保留这种稀疏表示关系来构建一个Laplacian正则化项,或称SFSR,最后提出一个鲁棒的基于SFSR的半监督学习框架,在几个实际基准数据库上的综合实验结果证实了所提框架的鲁棒有效性.展开更多
文摘图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.
文摘针对新生儿疼痛表情识别任务中由于有类别标签样本数量不足而导致分类准确率不高的问题,提出了一种基于图的半监督深度学习(Graph-based Semi-supervised Deep Learning,GSDL)方法。首先,使用训练集中少量有类别标签的样本对深度神经网络模型进行初步训练,得到初始模型;然后,利用初始模型提取有类别标签样本与无类别标签样本的特征向量,并使用提取的特征向量构建一个邻接矩阵,进而构建一个图,在构建的图上通过标签传播算法推测出无类别标签样本的伪标签;最后,使用所有样本及其标签对深度神经网络模型进行微调,得到最终的新生儿疼痛表情识别分类模型。在新生儿疼痛表情数据集上的实验结果表明,在使用相同数量的有类别标签样本情况下,文中提出的GSDL模型的分类准确率优于传统的有监督深度学习模型,也高于现有的半监督深度学习模型(Mean-Teachers,MT),验证了GSDL方法在新生儿疼痛表情识别中的有效性。
文摘源自中枢神经系统活动的脑电信号具有不易伪装性而被广泛应用于情感识别领域,但非稳态及微弱等特性导致其存在个体差异性。为适应不同被试之间的数据分布差异,迁移学习被引入脑电情感识别领域。但现有方法一方面未实现域适应与标记估计的有效协同,另一方面仅关注识别精度与数据分布忽略了共享子空间的属性发掘。针对上述问题,本研究提出一种联合双映射域适应与图半监督标签估计的脑电情感状态识别方法。通过在SEED-IV情感数据集进行跨被试情感识别效果验证。该数据集为15名受试者在3个不同时段(Session1,Session2,Session3)播放具有明显情感倾向的影片进行脑电数据采集。结果显示,所提出的方法对SEED-IV中3个时段数据的平均识别精度(77.7%、78.5%、79.6%)均优于现有多种迁移模型,较经典的联合域适应(JDA)方法的平均识别精度有大幅提升(Session2:53.7%vs 78.5%);较新近提出的模型也有最低8.9%(Session2 vs MEKT)的精度提升。此外,通过特征重要性的角度对共享子空间蕴含的脑电情感激活模式进行发掘,并结合频段权重平均结果显示,相较于其他4个频段γ频段具有较高的重要性,并通过单向方差分析验证了与其余4个频段的显著性差异(P<0.05);脑地形图呈现的结果发现,(中央)顶叶脑区权重高于其他脑区。所进行的研究对于脑电情感激活模式的学习分析提供了参考。
文摘在机器学习领域,半监督学习作为一种有力工具吸引了越来越多的关注,其利用少量带标签数据和大量无标签数据进行有效学习,其中基于图的半监督学习方法因其优雅的数学形式和良好的学习性能而引起更广泛的研究.针对现有基于图的半监督学习方法所存在的模型参数敏感和数据判别信息不充分等问题,提出一种稀疏特征空间嵌入正则化(Sparse Feature Space embedding Regularization,SFSR)半监督学习框架,其主要思想为:首先分别将原始数据嵌入到线性特征空间,然后利用特征空间嵌入投影点集来稀疏重构原始数据,随后在由原始数据线性张成的标签空间通过保留这种稀疏表示关系来构建一个Laplacian正则化项,或称SFSR,最后提出一个鲁棒的基于SFSR的半监督学习框架,在几个实际基准数据库上的综合实验结果证实了所提框架的鲁棒有效性.