期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于样本类别确定度的半监督分类 被引量:3
1
作者 高飞 朱福利 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第9期1941-1951,共11页
在对遥感图像进行分类时,全监督算法往往需要足够的标记样本进行训练,然而标记的过程是耗时和昂贵的,相反收集大量的无标记样本是很容易的。为了在学习过程中能够有效利用未标记样本的信息,本文提出了基于样本类别确定度(CCS)的半监督... 在对遥感图像进行分类时,全监督算法往往需要足够的标记样本进行训练,然而标记的过程是耗时和昂贵的,相反收集大量的无标记样本是很容易的。为了在学习过程中能够有效利用未标记样本的信息,本文提出了基于样本类别确定度(CCS)的半监督分类算法。首先,利用多分类支持向量机(SVM)得到未标记样本属于各类别的确定度,有效地衡量了未标记样本类别可靠性;其次,对样本类别确定度进行预处理,提升利用未标记样本的安全性;最后,基于样本类别确定度设计了半监督线性判别分析(LDA)降维算法并对其进行核化,使得样本在降维后的子空间更具有可分性,并根据降维后的数据特点,采用最近邻分类器对新样本进行分类。利用真实的合成孔径雷达(SAR)图像进行测试,验证了在标记样本较少的情况下,本文算法在性能上优于全监督和其他半监督算法,并能够快速收敛。 展开更多
关键词 遥感图像 监督分类 类别确定度 半监督线性判别分析 核方法
下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
2
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部