In this paper we define an equivalence relation on the set of all xj in order to form a basis for a new descent algebra of Weyl groups of type A,. By means of this, we construct a new commutative and semi-simple desce...In this paper we define an equivalence relation on the set of all xj in order to form a basis for a new descent algebra of Weyl groups of type A,. By means of this, we construct a new commutative and semi-simple descent algebra for Weyl groups of type An generated by equivalence classes arising from this equivalence relation.展开更多
Some properties of semi-continuous functions are investigated, and some characterizations of semi-stratifiable spaces with semi-continuous functions are given.
Let Tx be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, letTF(X) = {f ∈ Tx : arbieary (x, y) ∈ F, (f(x),f(y)) ∈ F}.Then TF(X) is a subsemigroup of Tx. Let E be ano...Let Tx be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, letTF(X) = {f ∈ Tx : arbieary (x, y) ∈ F, (f(x),f(y)) ∈ F}.Then TF(X) is a subsemigroup of Tx. Let E be another equivalence on X and TFE(X) = TF(X) ∩ TE(X). In this paper, under the assumption that the two equivalences F and E are comparable and E lohtain in F, we describe the regular elements and characterize Green's relations for the semigroup TFE(X).展开更多
文摘In this paper we define an equivalence relation on the set of all xj in order to form a basis for a new descent algebra of Weyl groups of type A,. By means of this, we construct a new commutative and semi-simple descent algebra for Weyl groups of type An generated by equivalence classes arising from this equivalence relation.
基金the National Natural Science Foundation of China (10471084, 10171043)
文摘Some properties of semi-continuous functions are investigated, and some characterizations of semi-stratifiable spaces with semi-continuous functions are given.
基金the Natural Science Found of Henan Province (No.0511010200)the Doctoral Fund of Henan Polytechnic University (No.2009A110007)the Natural Science Research Project for Education Department of Henan Province (No.2009A110007)
文摘Let Tx be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, letTF(X) = {f ∈ Tx : arbieary (x, y) ∈ F, (f(x),f(y)) ∈ F}.Then TF(X) is a subsemigroup of Tx. Let E be another equivalence on X and TFE(X) = TF(X) ∩ TE(X). In this paper, under the assumption that the two equivalences F and E are comparable and E lohtain in F, we describe the regular elements and characterize Green's relations for the semigroup TFE(X).