The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation...The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.展开更多
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2007CB714400)the Program of One Hundred Talents of the Chinese Academy of Sciences (No. 99T3005WA2)
文摘The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly.