为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification,MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum,MSCS)的多跳频信号二维波达方向(...为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification,MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum,MSCS)的多跳频信号二维波达方向(two dimensional direction of arrival,2D-DOA)高效估计算法。首先根据跳频信号的时频域特征,构建每一跳的空时频矩阵(spatial time-frequency distribution,STFD),获取时频域的协方差矩阵;然后将共轭子空间的思想引入到MUSIC算法中,通过对噪声子空间及其共轭的交集进行奇异值分解,实现噪声子空间的降维;最终通过半谱搜索实现2D-DOA的高效估计。同时为了提高低信噪比条件下算法的性能,在时频图处理过程中采用形态学滤波进行去噪,并在修正的时频图上完成了跳频信号每一跳的提取。通过理论论证和实验仿真表明,本文算法相比于MUSIC算法,在保证均方根误差相当和估计成功率有所提高的情况下,计算复杂度降低了一半。展开更多
文摘为了利用跳频信号的空域特征参数辅助多跳频信号的网台分选,在空时频分析的基础上,提出一种基于多重信号分类(multiple signal classification,MUSIC)对称压缩谱(MUSIC symmetrical compressed spectrum,MSCS)的多跳频信号二维波达方向(two dimensional direction of arrival,2D-DOA)高效估计算法。首先根据跳频信号的时频域特征,构建每一跳的空时频矩阵(spatial time-frequency distribution,STFD),获取时频域的协方差矩阵;然后将共轭子空间的思想引入到MUSIC算法中,通过对噪声子空间及其共轭的交集进行奇异值分解,实现噪声子空间的降维;最终通过半谱搜索实现2D-DOA的高效估计。同时为了提高低信噪比条件下算法的性能,在时频图处理过程中采用形态学滤波进行去噪,并在修正的时频图上完成了跳频信号每一跳的提取。通过理论论证和实验仿真表明,本文算法相比于MUSIC算法,在保证均方根误差相当和估计成功率有所提高的情况下,计算复杂度降低了一半。