期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于半阵相位和差法的相控阵雷达测角方法研究
1
作者 徐磊 张放 《舰船电子对抗》 2021年第5期28-33,49,共7页
针对相控阵雷达测角问题,给出了基于半阵相位和差法的相控阵雷达测角方法。首先介绍了比相和差波束的构成方法,然后对一维、二维阵列半阵相位和差法进行了数学建模和分析。对一维、二维阵列和差波束形成及鉴角曲线进行仿真,重点在一维... 针对相控阵雷达测角问题,给出了基于半阵相位和差法的相控阵雷达测角方法。首先介绍了比相和差波束的构成方法,然后对一维、二维阵列半阵相位和差法进行了数学建模和分析。对一维、二维阵列和差波束形成及鉴角曲线进行仿真,重点在一维相控阵架构上,利用本方法对不同引导角下偏离引导角不同角度的目标在不同相位误差和幅度误差条件下进行测角仿真并给出仿真分析。最后对本文进行了总结,同时给出可提升测角精度的建议方法。 展开更多
关键词 和差测角 半阵法 相位和差法 鉴角曲线
下载PDF
Half thresholding eigenvalue algorithm for semidefinite matrix completion
2
作者 CHEN YongQiang LUO ZiYan XIU NaiHua 《Science China Mathematics》 SCIE CSCD 2015年第9期2015-2032,共18页
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, S... The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm. 展开更多
关键词 semidefinite matrix completion S1/2relaxation half thresholding eigenvalue algorithm conver-gence
原文传递
Propagation of Lorentz–Gaussian Beams in Strongly Nonlocal Nonlinear Media
3
作者 A.Keshavarz G.Honarasa 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第2期241-245,共5页
In this paper the propagation of Lorentz–Gaussian beams in strongly nonlinear nonlocal media is investigated by the ABCD matrix method. For this purpose, an expression for field distribution during propagation is der... In this paper the propagation of Lorentz–Gaussian beams in strongly nonlinear nonlocal media is investigated by the ABCD matrix method. For this purpose, an expression for field distribution during propagation is derived and based on it, the propagation of Lorentz–Gaussian beams is simulated in this media. Then, the evolutions of beam width and curvature radius during propagation are discussed. 展开更多
关键词 nonlocal nonlinear media Lorentz-Gaussian beam ABCD matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部