In this paper, we investigate HUA’s Theorem for short intervals under GRH. Let E k(x)=#{{n≤x;2|n,k is odd, n≠p 1+p k 2}∪{n≤x;2|n,2|k,(p-1)|k, n1(modp),n≠p 1+p k 2}}. Assume GRH. For any k≥2, any A】0 ...In this paper, we investigate HUA’s Theorem for short intervals under GRH. Let E k(x)=#{{n≤x;2|n,k is odd, n≠p 1+p k 2}∪{n≤x;2|n,2|k,(p-1)|k, n1(modp),n≠p 1+p k 2}}. Assume GRH. For any k≥2, any A】0 and any 0【ε【14,E k(x+H)-E k(x)≤H(log x) -Aholds for x 12-14k+ε≤H≤x, here the implies constant depends at most on A and ε.展开更多
文摘In this paper, we investigate HUA’s Theorem for short intervals under GRH. Let E k(x)=#{{n≤x;2|n,k is odd, n≠p 1+p k 2}∪{n≤x;2|n,2|k,(p-1)|k, n1(modp),n≠p 1+p k 2}}. Assume GRH. For any k≥2, any A】0 and any 0【ε【14,E k(x+H)-E k(x)≤H(log x) -Aholds for x 12-14k+ε≤H≤x, here the implies constant depends at most on A and ε.