期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于双深度Q网络算法的多用户端对端能源共享机制研究
1
作者 武东昊 王国烽 +2 位作者 毛毳 陈玉萍 张有兵 《高技术通讯》 CAS 北大核心 2024年第7期755-764,共10页
端对端(P2P)电力交易作为用户侧能源市场的一种新的能源平衡和互动方式,可以有效促进用户群体内的能源共享,提高参与能源市场用户的经济效益。然而传统求解用户间P2P交易的方法依赖对于光伏、负荷数据的预测,难以实时响应用户间的源荷... 端对端(P2P)电力交易作为用户侧能源市场的一种新的能源平衡和互动方式,可以有效促进用户群体内的能源共享,提高参与能源市场用户的经济效益。然而传统求解用户间P2P交易的方法依赖对于光伏、负荷数据的预测,难以实时响应用户间的源荷变动问题。为此,本文建立了一种以多类型用户为基础的多用户P2P能源社区交易模型,并引入基于双深度Q网络(DDQN)的强化学习(RL)算法对其进行求解。所提方法通过DDQN算法中的预测网络以及目标网络读取多用户P2P能源社区中的环境信息,训练后的神经网络可通过实时的光伏、负荷以及电价数据对当前社区内的多用户P2P交易问题进行求解。案例仿真结果表明,所提方法在促进社区内用户间P2P能源交易共享的同时,保证了多用户P2P能源社区的经济性。 展开更多
关键词 端对端(P2P)能源共享 强化学习(RL) 能源交易市场 深度q网络(DDqN)算法
下载PDF
基于协作式深度强化学习的火灾应急疏散仿真研究 被引量:5
2
作者 倪凌佳 黄晓霞 +1 位作者 李红旮 张子博 《系统仿真学报》 CAS CSCD 北大核心 2022年第6期1353-1366,共14页
火灾是威胁公共安全的主要灾害之一,火灾产生的高温和有毒有害烟气严重影响了疏散路径的选择。将深度强化学习引入到应急疏散仿真研究,针对多智能体环境提出了协作式双深度Q网络算法。建立随时间动态变化的火灾场景模型,为人员疏散提供... 火灾是威胁公共安全的主要灾害之一,火灾产生的高温和有毒有害烟气严重影响了疏散路径的选择。将深度强化学习引入到应急疏散仿真研究,针对多智能体环境提出了协作式双深度Q网络算法。建立随时间动态变化的火灾场景模型,为人员疏散提供实时的危险区域分布信息;对各自独立的智能体神经网络进行整合,建立多智能体统一的深度神经网络,实现所有智能体之间的神经网络和经验共享,提高整体协作疏散效率。结果表明:所提方法具有良好的稳定性和适应性,训练和学习效率得到提升,具有良好的应用价值。 展开更多
关键词 协作式双深度q网络算法 深度强化学习 多智能体系统 应急疏散仿真 火灾场景仿真
下载PDF
基于深度强化学习和隐私保护的群智感知动态任务分配策略
3
作者 傅彦铭 陆盛林 +1 位作者 陈嘉元 覃华 《信息网络安全》 CSCD 北大核心 2024年第3期449-461,共13页
在移动群智感知(Mobile Crowd Sensing,MCS)中,动态任务分配的结果对提高系统效率和确保数据质量至关重要。然而,现有的大部分研究在处理动态任务分配时,通常将其简化为二分匹配模型,该简化模型未充分考虑任务属性与工人属性对匹配结果... 在移动群智感知(Mobile Crowd Sensing,MCS)中,动态任务分配的结果对提高系统效率和确保数据质量至关重要。然而,现有的大部分研究在处理动态任务分配时,通常将其简化为二分匹配模型,该简化模型未充分考虑任务属性与工人属性对匹配结果的影响,同时忽视了工人位置隐私的保护问题。针对这些不足,文章提出一种基于深度强化学习和隐私保护的群智感知动态任务分配策略。该策略首先通过差分隐私技术为工人位置添加噪声,保护工人隐私;然后利用深度强化学习方法自适应地调整任务批量分配;最后使用基于工人任务执行能力阈值的贪婪算法计算最优策略下的平台总效用。在真实数据集上的实验结果表明,该策略在不同参数设置下均能保持优越的性能,同时有效地保护了工人的位置隐私。 展开更多
关键词 群智感知 深度强化学习 隐私保护 深度q网络 能力阈值贪婪算法
下载PDF
基于深度强化学习的增程式电动轻卡能量管理策略 被引量:1
4
作者 段龙锦 王贵勇 +1 位作者 王伟超 何述超 《内燃机工程》 CAS CSCD 北大核心 2023年第6期90-99,共10页
为了解决增程式电动轻卡辅助动力单元(auxiliary power units,APU)和动力电池之间能量的合理分配问题,在Simulink中建立面向控制的仿真模型,并提出一种基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,T... 为了解决增程式电动轻卡辅助动力单元(auxiliary power units,APU)和动力电池之间能量的合理分配问题,在Simulink中建立面向控制的仿真模型,并提出一种基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)算法的实时能量管理策略,以发动机燃油消耗量、电池荷电状态(state of charge,SOC)变化等为优化目标,在世界轻型车辆测试程序(world light vehicle test procedure,WLTP)中对深度强化学习智能体进行训练。仿真结果表明,利用不同工况验证了基于TD3算法的能量管理策略(energy management strategy,EMS)具有较好的稳定性和适应性;TD3算法实现对发动机转速和转矩连续控制,使得输出功率更加平滑。将基于TD3算法的EMS与基于传统深度Q网络(deep Q-network,DQN)算法和深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法进行对比分析,结果表明:基于TD3算法的EMS燃油经济性分别相比基于DQN算法和DDPG算法提高了12.35%和0.67%,达到基于动态规划(dynamic programming,DP)算法的94.85%,收敛速度相比基于DQN算法和DDPG算法分别提高了40.00%和47.60%。 展开更多
关键词 深度q网络 深度确定性策略梯度 延迟深度确定性策略梯度算法 增程电动轻卡
下载PDF
基于深度强化学习的节能工艺路线发现方法
5
作者 陶鑫钰 王艳 纪志成 《智能系统学报》 CSCD 北大核心 2023年第1期23-35,共13页
由于传统基于固定加工环境的工艺路线制定规则,无法快速响应加工环境的动态变化制定节能工艺路线。因此提出了基于深度Q网络(deep Q network,DQN)的节能工艺路线发现方法。基于马尔可夫决策过程,定义状态向量、动作空间、奖励函数,建立... 由于传统基于固定加工环境的工艺路线制定规则,无法快速响应加工环境的动态变化制定节能工艺路线。因此提出了基于深度Q网络(deep Q network,DQN)的节能工艺路线发现方法。基于马尔可夫决策过程,定义状态向量、动作空间、奖励函数,建立节能工艺路线模型,并将加工环境动态变化的节能工艺路线规划问题,转化为DQN智能体决策问题,利用决策经验的可复用性和可扩展性,进行求解,同时为了提高DQN的收敛速度和解的质量,提出了基于S函数探索机制和加权经验池,并使用了双Q网络。仿真结果表明,相比较改进前,改进后的算法在动态加工环境中能够更快更好地发现节能工艺路线;与遗传算法、模拟退火算法以及粒子群算法相比,改进后的算法不仅能够以最快地速度发现节能工艺路线,而且能得到相同甚至更高精度的解。 展开更多
关键词 深度强化学习 深度q网络 动态加工环境 工艺路线 马尔可夫决策过程 智能体决策 q网络 启发算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部