To mutagenize two conserved CCCT and PTK motifs in the central domain of Chinese strain of potato Y potyvirus (PVY-C) helper component proteinase (HC-Pro), four mutants of HC-Pro gene were obtained by PCR and site-dir...To mutagenize two conserved CCCT and PTK motifs in the central domain of Chinese strain of potato Y potyvirus (PVY-C) helper component proteinase (HC-Pro), four mutants of HC-Pro gene were obtained by PCR and site-directed mutagenesis, and then were inserted into the constitutive expression vector pBin438. Leaves from tobacco (Nicotiana tabacum L. cv. K326) were transformed with these four plant expression plasmids by Agrobacterium-mediated transformation, respectively. Southern and Western blotting analyses showed that these four mutants were integrated into tobacco genomic DNA and could express the corresponding proteins in most of die transgenic plants. The challenge of transgenic plants with potato X potexvirus (PVX) revealed that the expression products of PVY-C HC-Pro mutants in transgenic plants greatly abolished functions of HC-Pro in enhancing the accumulation and pathogenicity of PVX, indicating that CCCT and PTK motifs of HC-Pro were required for PVX/PVY synergism. Meanwhile, the results demonstrated that PVY-C HC-Pro had a function in accelerating the long-distance movement of PVX in these transgenic plants for the first time.展开更多
Gold catalysis had been considered a highly efficient candidate for heterogeneous catalysis.It is well established that reducible-material-supported Au NPs are more reactive than the unreducible materials,unless speci...Gold catalysis had been considered a highly efficient candidate for heterogeneous catalysis.It is well established that reducible-material-supported Au NPs are more reactive than the unreducible materials,unless specific modifications are carried out.However,unreducible materials such as carbon materials,silica,and alumina have particular advantages,including the easily controlled surface property,adjustable microscopic structure,earth-abundant reserves,and facile industrial manufacture.New strategies,influences,and mechanisms of modification to enhance the catalytic performance and thermal stability of unreducible-material-supported gold catalysts are among the most attractive research topics in gold catalysis.However,to the best of our knowledge,reports and reviews focused on unreducible-material-supported gold catalysts are lacking.Herein,the above concept will be thoroughly discussed regarding several typical unreducible supports,including the commonly used silica,alumina,carbon materials,and hydroxyapatite.The currently prevailing modification strategies will be summarized in detail from the aspects of theoretical conceptualization and practical methodology,including the ingenious synthesis method for catalyst with a specific structure,the currently prosperous electrostatic adsorption,colloid immobilization,and the applicative thermal gaseous treatment.The influences of physical and chemical modifications on the surface chemistry,electronic structure,interaction/synergy between Au-support/promoter,catalyst morphology and water precipitation will be also summarized.It is assumed that the review will shed light on significant studies on unreducible support in gold catalysis with the purpose of catalytic promotion and the promotion of the potential industrial demands in advance.Furthermore,the review will provide new insights into unreducible supports that can be potentially applied in gold catalysis.展开更多
Effective charge separation and rapid interfacial H_(2) production are imperative for the construction of efficient photocatalysts.Compared to Pt,the metallic Ag co‐catalyst with its strong electron‐trapping ability...Effective charge separation and rapid interfacial H_(2) production are imperative for the construction of efficient photocatalysts.Compared to Pt,the metallic Ag co‐catalyst with its strong electron‐trapping ability and excellent electronic conductivity typically exhibits an extremely limited photocatalytic H_(2-)evolution rate owing to its sluggish interfacial H_(2)‐generation reaction.In this study,amorphous AgSe_(x) was incorporated in situ onto metallic Ag as a novel and excellent H_(2)‐evolution active site to boost the interfacial H_(2)‐generation rate of Ag nanoparticles in a TiO_(2)/Ag system.Core‐shell Ag@AgSe_(x)nanoparticle‐modified TiO_(2)photocatalysts were prepared via a two‐step pathway involving the photodeposition of metallic Ag and the selective surface selenization of metallic Ag to yield amorphous AgSe_(x)shells.The as‐prepared TiO_(2)/Ag@AgSe_(x)(20μL)photocatalyst exhibited an excellent H_(2‐)production performance of 853.0μmol h^(-1)g^(-1),prominently outperforming the TiO_(2)and TiO_(2)/Ag samples by factors of 11.6 and 2.4,respectively.Experimental investigations and DFT calculations revealed that the enhanced H_(2‐)generation activity of the TiO_(2)/Ag@AgSe_(x)photocatalyst could be accounted by synergistic interactions of the Ag@AgSe_(x)co‐catalyst.Essentially,the metallic Ag core could quickly capture and transport the photoinduced electrons from TiO_(2)to the amorphous AgSe_(x)shell,whereas the amorphous AgSe_(x)shell provided large active sites for boosting the interfacial H_(2)evolution.This study offers a facile route for the construction of novel core‐shell co‐catalysts for sustainable H_(2)evolution.展开更多
文摘To mutagenize two conserved CCCT and PTK motifs in the central domain of Chinese strain of potato Y potyvirus (PVY-C) helper component proteinase (HC-Pro), four mutants of HC-Pro gene were obtained by PCR and site-directed mutagenesis, and then were inserted into the constitutive expression vector pBin438. Leaves from tobacco (Nicotiana tabacum L. cv. K326) were transformed with these four plant expression plasmids by Agrobacterium-mediated transformation, respectively. Southern and Western blotting analyses showed that these four mutants were integrated into tobacco genomic DNA and could express the corresponding proteins in most of die transgenic plants. The challenge of transgenic plants with potato X potexvirus (PVX) revealed that the expression products of PVY-C HC-Pro mutants in transgenic plants greatly abolished functions of HC-Pro in enhancing the accumulation and pathogenicity of PVX, indicating that CCCT and PTK motifs of HC-Pro were required for PVX/PVY synergism. Meanwhile, the results demonstrated that PVY-C HC-Pro had a function in accelerating the long-distance movement of PVX in these transgenic plants for the first time.
文摘Gold catalysis had been considered a highly efficient candidate for heterogeneous catalysis.It is well established that reducible-material-supported Au NPs are more reactive than the unreducible materials,unless specific modifications are carried out.However,unreducible materials such as carbon materials,silica,and alumina have particular advantages,including the easily controlled surface property,adjustable microscopic structure,earth-abundant reserves,and facile industrial manufacture.New strategies,influences,and mechanisms of modification to enhance the catalytic performance and thermal stability of unreducible-material-supported gold catalysts are among the most attractive research topics in gold catalysis.However,to the best of our knowledge,reports and reviews focused on unreducible-material-supported gold catalysts are lacking.Herein,the above concept will be thoroughly discussed regarding several typical unreducible supports,including the commonly used silica,alumina,carbon materials,and hydroxyapatite.The currently prevailing modification strategies will be summarized in detail from the aspects of theoretical conceptualization and practical methodology,including the ingenious synthesis method for catalyst with a specific structure,the currently prosperous electrostatic adsorption,colloid immobilization,and the applicative thermal gaseous treatment.The influences of physical and chemical modifications on the surface chemistry,electronic structure,interaction/synergy between Au-support/promoter,catalyst morphology and water precipitation will be also summarized.It is assumed that the review will shed light on significant studies on unreducible support in gold catalysis with the purpose of catalytic promotion and the promotion of the potential industrial demands in advance.Furthermore,the review will provide new insights into unreducible supports that can be potentially applied in gold catalysis.
文摘Effective charge separation and rapid interfacial H_(2) production are imperative for the construction of efficient photocatalysts.Compared to Pt,the metallic Ag co‐catalyst with its strong electron‐trapping ability and excellent electronic conductivity typically exhibits an extremely limited photocatalytic H_(2-)evolution rate owing to its sluggish interfacial H_(2)‐generation reaction.In this study,amorphous AgSe_(x) was incorporated in situ onto metallic Ag as a novel and excellent H_(2)‐evolution active site to boost the interfacial H_(2)‐generation rate of Ag nanoparticles in a TiO_(2)/Ag system.Core‐shell Ag@AgSe_(x)nanoparticle‐modified TiO_(2)photocatalysts were prepared via a two‐step pathway involving the photodeposition of metallic Ag and the selective surface selenization of metallic Ag to yield amorphous AgSe_(x)shells.The as‐prepared TiO_(2)/Ag@AgSe_(x)(20μL)photocatalyst exhibited an excellent H_(2‐)production performance of 853.0μmol h^(-1)g^(-1),prominently outperforming the TiO_(2)and TiO_(2)/Ag samples by factors of 11.6 and 2.4,respectively.Experimental investigations and DFT calculations revealed that the enhanced H_(2‐)generation activity of the TiO_(2)/Ag@AgSe_(x)photocatalyst could be accounted by synergistic interactions of the Ag@AgSe_(x)co‐catalyst.Essentially,the metallic Ag core could quickly capture and transport the photoinduced electrons from TiO_(2)to the amorphous AgSe_(x)shell,whereas the amorphous AgSe_(x)shell provided large active sites for boosting the interfacial H_(2)evolution.This study offers a facile route for the construction of novel core‐shell co‐catalysts for sustainable H_(2)evolution.