The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energ...The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10435080 and 10575123 and the Chinese Academy of Sciences Knowledge Innovation Project under Grant Nos. KJCX2-SW-N1b and KJC-SYW-N2
文摘The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.