This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are ...This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.展开更多
基金supported by the Doctoral Fund of Ludong University(LY2013001,LY201222)Science and Technology Development Projects of Shandong Province(2012YD01056)+2 种基金Shangdong Province Young and Middle-Aged Scientists Research Awards Fund(BS2013SF029)National Natural Science Foundation of China-Tianyuan Fund for Mathematics(11426126)Natural Science Foundation of Shandong Province(ZR2014AP007)
基金supported by the National Natural Science Foundation of China under Grant Nos.11471029,11101014,61273221 and 11171010the Beijing Natural Science Foundation under Grant Nos.1142002 and 1112001+1 种基金the Science and Technology Project of Beijing Municipal Education Commission under Grant No.KM201410005010the Research Fund for the Doctoral Program of Beijing University of Technology under Grant No.006000543114550
文摘This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models.The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate.The authors show that under some appropriate conditions,the SCAD-penalized least squares estimator has the so called "oracle property".In addition,the authors also suggest a BIC criterion to select the tuning parameter,and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models.Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.