A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-buta...A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments. The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments, as well as the synergistic effect between 1,3- butadiene and propyne on the formation of a series of aromatic hydrocarbons. Based on the rate of production and sensitivity analyses, key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved. The synergistic effect results from the interaction between 1,3-butadiene and propyne. The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons. Besides, the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously, which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.展开更多
Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material.Considering that the adsorption of reactants is...Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material.Considering that the adsorption of reactants is essential for catalytic reactions to occur,in this study,the synergistic effect of photothermal catalysis is innovatively elucidated in terms of the electron transfer behavior of reactant adsorption.For the H_(2)+O2 or CO+H_(2)reaction systems over a ZnO catalyst,UV irradiation at 25°C or heat without UV irradiation did not cause H_(2)oxidation or CO reduction;only photothermal conditions(100 or 150°C+UV light)initiated the two reactions.This result is related to the electron transfer behavior associated with the adsorption of CO or H_(2)on ZnO,in which H_(2)or CO that lost an electron could be oxidized by O2 or hydroxyls.However,the electron‐accepting CO could be reduced by the electron‐donating H_(2)into CH4 under photothermal conditions.Based on the in‐situ characterization and theoretical calculation results,it was established that the synergistic effect of the photothermal conditions acted on the(002)crystal surface of ZnO to stimulate the growth of zinc vacancies,which resulted in the formation of defect energy levels,adsorption sites,and an adjusted Fermi level.As a result,the electron transfer behavior between adsorbed CO or H_(2)and the crystal surface varied,which further affected the photocatalytic behavior.The results show that the effect of photothermal synergy may not only produce the expected kinetic energy,but more importantly,produce energy that can change the activation mode of the reactant gas.This study provides a new understanding of the CO catalytic oxidation and reduction processes over semiconductor materials.展开更多
Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. ...Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.展开更多
Geomicrobiology is a sub-discipline of geobiology and emphasizes the interaction between microorganisms and their environment on Earth. There is a need to explicitly emphasize the biogeochemical processes performed by...Geomicrobiology is a sub-discipline of geobiology and emphasizes the interaction between microorganisms and their environment on Earth. There is a need to explicitly emphasize the biogeochemical processes performed by microorganisms associated with Earth's tectonic activities, especially under the framework of the modern theory of plate tectonics. Tectonomicrobiology aims to create a better synergy between microbial and active tectonic processes. This explicit synergy should also foster better communications between solid Earth scientists and life scientists in terms of holistic Earth system dynamics at both tectonic and micro-scales.展开更多
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer...To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid-to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics(CFD) at different Reynolds number for D/dp=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.展开更多
Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with gl...Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.展开更多
Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of ...Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of filament. The results show that the cooperativRy leads to non negative-exponential distribution of T (ATP or GTP) subunits. As an application, we investigate the treadmilling phenomenon using our model. It is shown that the cooperativity remarkably affects the length of filament.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.51476155, No.51622605, No.91541201), the National Key Sci- entific Instruments and Equipment Development Program of China (No.2012YQ22011305), the National Postdoctoral Program for Innovative Talents (No.BX201600100), and China Postdoctoral Science Foundation (No.2016M600312).
文摘A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments. The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments, as well as the synergistic effect between 1,3- butadiene and propyne on the formation of a series of aromatic hydrocarbons. Based on the rate of production and sensitivity analyses, key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved. The synergistic effect results from the interaction between 1,3-butadiene and propyne. The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons. Besides, the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously, which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.
文摘Photothermal catalysis is a widely researched field in which the reaction mechanism is usually investigated based on the photochemical behavior of the catalytic material.Considering that the adsorption of reactants is essential for catalytic reactions to occur,in this study,the synergistic effect of photothermal catalysis is innovatively elucidated in terms of the electron transfer behavior of reactant adsorption.For the H_(2)+O2 or CO+H_(2)reaction systems over a ZnO catalyst,UV irradiation at 25°C or heat without UV irradiation did not cause H_(2)oxidation or CO reduction;only photothermal conditions(100 or 150°C+UV light)initiated the two reactions.This result is related to the electron transfer behavior associated with the adsorption of CO or H_(2)on ZnO,in which H_(2)or CO that lost an electron could be oxidized by O2 or hydroxyls.However,the electron‐accepting CO could be reduced by the electron‐donating H_(2)into CH4 under photothermal conditions.Based on the in‐situ characterization and theoretical calculation results,it was established that the synergistic effect of the photothermal conditions acted on the(002)crystal surface of ZnO to stimulate the growth of zinc vacancies,which resulted in the formation of defect energy levels,adsorption sites,and an adjusted Fermi level.As a result,the electron transfer behavior between adsorbed CO or H_(2)and the crystal surface varied,which further affected the photocatalytic behavior.The results show that the effect of photothermal synergy may not only produce the expected kinetic energy,but more importantly,produce energy that can change the activation mode of the reactant gas.This study provides a new understanding of the CO catalytic oxidation and reduction processes over semiconductor materials.
基金supported by the National Natural Science Foundation of China under Grant No.10575041
文摘Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated. For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.
基金supported by the National Natural Science Foundation of China(Grant Nos.41530105,41373072,91628301&U1606401)the Chinese Academy of Sciences(Grant Nos.Y4SL021001&QYZDY-SSW-DQC005)the Southern University of Science and Technology(Grant No.Y01316209)
文摘Geomicrobiology is a sub-discipline of geobiology and emphasizes the interaction between microorganisms and their environment on Earth. There is a need to explicitly emphasize the biogeochemical processes performed by microorganisms associated with Earth's tectonic activities, especially under the framework of the modern theory of plate tectonics. Tectonomicrobiology aims to create a better synergy between microbial and active tectonic processes. This explicit synergy should also foster better communications between solid Earth scientists and life scientists in terms of holistic Earth system dynamics at both tectonic and micro-scales.
基金supported by the National Natural Science Foundation of China(5127618151476173)the National Basic Research Program of China(2011CB 710705)
文摘To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid-to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics(CFD) at different Reynolds number for D/dp=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.
基金This work was supported by the National Key Research and Development Program of China(2018YFA0704003)the Basic Research Program of Shenzhen(JCYJ20180305163452667,JCYJ20180507182413022,and JCYJ20170412111100742)+3 种基金the National Natural Science Foundation of China(81903564,31771036,51703132,and 21874119)the Guangdong Provincial Natural Science Foundation of Major Basic Research and Cultivation Project(2018B030308003)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161032)We thank Instrumental Analysis Center of Shenzhen University(Lihu Campus).
文摘Multimodal cancer synergistic therapy exhibited remarkable advantages over monotherapy in producing an improved therapeutic efficacy. In this work, Janus-type γ-Fe2 O3/SiO2 nanoparticles(JFSNs) are conjugated with glucose oxidase(GOx) for synergistic cancer starvation/chemodynamic therapy. The γ-Fe2O3 hemisphere of JFSNs can perform photoacoustic/T2 magnetic resonance dual-modal imaging of tumors.GOx on the surface of JFSNs catalyzes the decomposition of glucose and produces H2O2 for cancer starvation therapy. Subsequently, the γ-Fe2O3 hemisphere catalyzes the disproportionation of H2O2 to generate highly reactive hydroxyl radicals in an acidic tumor microenvironment. The close distance between GOx and JFSNs ensures adequate contact between the γ-Fe2O3 hemisphere and its substrate H2O2, thus enhancing the catalytic efficiency. This synergy of glucose depletion, biotoxic H2O2 and hydroxyl radicals significantly suppresses 4 T1 mammary tumor growth with minimal adverse effects.
基金Supported by Chinese Universities Scientific Fund under Grant No.2014YB029National Natural Science Foundation of China under Grant No.11205123
文摘Cytoskeleton is a network of filamentous proteins, such as actin filaments and microtubules. We propose a continuum cooperative hydrolysis model which possesses exactly analytical solution to describe the dynamics of filament. The results show that the cooperativRy leads to non negative-exponential distribution of T (ATP or GTP) subunits. As an application, we investigate the treadmilling phenomenon using our model. It is shown that the cooperativity remarkably affects the length of filament.