环境温度不仅影响集热场光热效率,也会通过影响凝汽器背压而影响集热场热电效率,为分析其对太阳能协同燃煤发电(Solar aided coal-fi red power generation,SACPG)系统的性能影响,建立了基于Matlab/Simulink的600 MW太阳能协同燃煤发电...环境温度不仅影响集热场光热效率,也会通过影响凝汽器背压而影响集热场热电效率,为分析其对太阳能协同燃煤发电(Solar aided coal-fi red power generation,SACPG)系统的性能影响,建立了基于Matlab/Simulink的600 MW太阳能协同燃煤发电系统的机理模型,在性能耦合分析的基础上,研究环境温度对集热器光热、热电和光电效率及协同系统效率和省煤量的影响。研究表明:集热场光电效率随环境温度的升高而先增后减,最佳值是环境温度为0℃时;在完全取代第一段抽汽时,协同系统较原系统效率约提高1.5%,省煤量可超过8.8 g/kWh。展开更多
Recently, the number of system interconnection of the renewable energy such as PV (photovoltaic) generation system and wind power generation system has been increasing drastically. A distribution system with the dis...Recently, the number of system interconnection of the renewable energy such as PV (photovoltaic) generation system and wind power generation system has been increasing drastically. A distribution system with the distributed generation must be operated keeping reliability of power supply and power quality. When high-capacity PV systems are interconnected to the distribution system, the system voltages may be deviated from the upper limit or lower limit of proper voltage in the distribution system. In this study, the authors propose a cooperative voltage control method of the distribution system by the power factor control of plural residential PV systems. In order to verify the validity of the proposal method, the numerical calculations are carried out by using an analytical model of distribution system which interconnected residential PV systems.展开更多
文摘环境温度不仅影响集热场光热效率,也会通过影响凝汽器背压而影响集热场热电效率,为分析其对太阳能协同燃煤发电(Solar aided coal-fi red power generation,SACPG)系统的性能影响,建立了基于Matlab/Simulink的600 MW太阳能协同燃煤发电系统的机理模型,在性能耦合分析的基础上,研究环境温度对集热器光热、热电和光电效率及协同系统效率和省煤量的影响。研究表明:集热场光电效率随环境温度的升高而先增后减,最佳值是环境温度为0℃时;在完全取代第一段抽汽时,协同系统较原系统效率约提高1.5%,省煤量可超过8.8 g/kWh。
文摘Recently, the number of system interconnection of the renewable energy such as PV (photovoltaic) generation system and wind power generation system has been increasing drastically. A distribution system with the distributed generation must be operated keeping reliability of power supply and power quality. When high-capacity PV systems are interconnected to the distribution system, the system voltages may be deviated from the upper limit or lower limit of proper voltage in the distribution system. In this study, the authors propose a cooperative voltage control method of the distribution system by the power factor control of plural residential PV systems. In order to verify the validity of the proposal method, the numerical calculations are carried out by using an analytical model of distribution system which interconnected residential PV systems.