A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-buta...A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments. The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments, as well as the synergistic effect between 1,3- butadiene and propyne on the formation of a series of aromatic hydrocarbons. Based on the rate of production and sensitivity analyses, key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved. The synergistic effect results from the interaction between 1,3-butadiene and propyne. The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons. Besides, the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously, which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.展开更多
The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, ...The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR* and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR*-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR* and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR* and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.展开更多
A series of new benzimidazole derivatives was synthesized and characterized by IR,1H NMR,13C NMR,MS,and HRMS spectra.All the new compounds were screened for their antimicrobial activities in vitro by a twofold serial ...A series of new benzimidazole derivatives was synthesized and characterized by IR,1H NMR,13C NMR,MS,and HRMS spectra.All the new compounds were screened for their antimicrobial activities in vitro by a twofold serial dilution technique.The bioactive evaluation showed that 3,5-bis(trifluoromethyl)phenyl benzimidazoles were comparably or even more strongly antibacterial and antifungal than the reference drugs Chloromycin,Norfloxacin,and Fluconazole.The combination of2,4-difluorobenzyl benzimidazole derivative 5l and its hydrochloride 7 respectively with the antibacterials Chloromycin,Norfloxacin,and the antifungal Fluconazole was more sensitive to methicillin-resistant MRSA and Fluconazole-insensitive A.flavus.In addition,the interaction of compound 5l with calf thymus DNA demonstrated that this compound could effectively intercalate into DNA to form a compound 5l-DNA complex that might block DNA replication and thereby exert good antimicrobial activity.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.51476155, No.51622605, No.91541201), the National Key Sci- entific Instruments and Equipment Development Program of China (No.2012YQ22011305), the National Postdoctoral Program for Innovative Talents (No.BX201600100), and China Postdoctoral Science Foundation (No.2016M600312).
文摘A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments. The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments, as well as the synergistic effect between 1,3- butadiene and propyne on the formation of a series of aromatic hydrocarbons. Based on the rate of production and sensitivity analyses, key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved. The synergistic effect results from the interaction between 1,3-butadiene and propyne. The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons. Besides, the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously, which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.
基金supported by grants from the Ministry of Science and Technology of China (2013CB734001, 2009CB118905)the National Natural Science Foundation of China (31270110, 31030003)
文摘The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR* and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR*-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR* and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR* and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.
基金supported by the National Natural Science Foundation of China (21172181,21372186)the Research Fellowship for International Young Scientists from the International (Regional) Cooperation and Exchange Program (81250110554,81350110338,81350110523)+1 种基金the key program from Natural Science Foundation of Chongqing (CSTC2012- jjB10026)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110182110007)
文摘A series of new benzimidazole derivatives was synthesized and characterized by IR,1H NMR,13C NMR,MS,and HRMS spectra.All the new compounds were screened for their antimicrobial activities in vitro by a twofold serial dilution technique.The bioactive evaluation showed that 3,5-bis(trifluoromethyl)phenyl benzimidazoles were comparably or even more strongly antibacterial and antifungal than the reference drugs Chloromycin,Norfloxacin,and Fluconazole.The combination of2,4-difluorobenzyl benzimidazole derivative 5l and its hydrochloride 7 respectively with the antibacterials Chloromycin,Norfloxacin,and the antifungal Fluconazole was more sensitive to methicillin-resistant MRSA and Fluconazole-insensitive A.flavus.In addition,the interaction of compound 5l with calf thymus DNA demonstrated that this compound could effectively intercalate into DNA to form a compound 5l-DNA complex that might block DNA replication and thereby exert good antimicrobial activity.