期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
融合协同知识图谱和图卷积网络的推荐算法 被引量:2
1
作者 沈鑫科 李勇 +1 位作者 陈建伟 陈囿任 《计算机技术与发展》 2024年第1期150-157,共8页
推荐系统广泛应用于互联网,缓解信息过载问题。现有研究通常将知识图谱引入推荐算法中,但不能有效获取用户与项目的高阶建模以及存在数据稀疏性的问题。该文提出了一种融合协同知识图谱和图卷积网络的推荐算法(CKGCN)。首先,将用户-项... 推荐系统广泛应用于互联网,缓解信息过载问题。现有研究通常将知识图谱引入推荐算法中,但不能有效获取用户与项目的高阶建模以及存在数据稀疏性的问题。该文提出了一种融合协同知识图谱和图卷积网络的推荐算法(CKGCN)。首先,将用户-项目交互矩阵与项目知识图谱构建为协同知识图谱,利用知识感知注意力机制对邻居节点进行权重分配,递归地捕获用户和项目的特征向量,搜索用户对项目的潜在喜好,有效缓解数据稀疏性的问题。其次,采用基于图卷积网络的邻域聚合算法捕捉每层实体网络之间的高阶联系,将实体与邻域实体聚合,丰富实体语义表示。另外,通过交叉压缩单元协作处理项目特征向量与实体特征向量,探索二者的高阶特征交互,从而过滤实体的冗余信息、挖掘项目更深层次的联系。最后,对用户特征向量与项目特征向量进行计算得出用户对项目的预测概率。经过点击率预测及Top-k推荐实验证明,在书籍Book_Crossing和音乐Last.FM两个公开的数据集上,该算法与五种基线算法相比较,AUC,ACC,F1,Recall@k和Precision@k评价指标值均有提升,表明该模型具有良好的推荐性能。 展开更多
关键词 推荐算法 协同知识图谱 注意力机制 图卷积网络 实体特征
下载PDF
融合协同知识图谱与反事实推理的可解释推荐机制 被引量:3
2
作者 夏子芳 于亚新 +1 位作者 王子腾 乔佳琪 《计算机应用》 CSCD 北大核心 2023年第7期2001-2009,共9页
为构建透明可信的推荐机制,相关研究工作主要通过可解释推荐机制为个性化推荐提供合理解释,然而现有可解释推荐机制存在三大局限:1)利用相关关系只能提供合理化解释而非因果解释,而利用路径提供解释存在隐私泄露问题;2)忽略了用户反馈... 为构建透明可信的推荐机制,相关研究工作主要通过可解释推荐机制为个性化推荐提供合理解释,然而现有可解释推荐机制存在三大局限:1)利用相关关系只能提供合理化解释而非因果解释,而利用路径提供解释存在隐私泄露问题;2)忽略了用户反馈稀疏的问题,解释的保真度难以保证;3)解释粒度较粗,未考虑用户个性化偏好。为解决上述问题,提出基于协同知识图谱(CKG)与反事实推理的可解释推荐机制(ERCKCI)。首先,基于用户自身的行为序列,采用反事实推理思想利用因果关系实现高稀疏度因果去相关,并迭代推导出反事实解释;其次,为提升解释保真度,不仅在单时间片上利用CKG和图神经网络(GNN)的邻域传播机制学习用户和项目表征,还在多时间片上通过自注意力机制捕获用户长短期偏好以增强用户偏好表征;最后,基于反事实集的高阶连通子图捕获用户的多粒度个性化偏好,从而增强反事实解释。为验证ERCKCI机制的有效性,在公开数据集MovieLens(100k)、Book-crossing和MovieLens(1M)上进行了对比实验。所得结果表明,该机制在前两个数据集上相较于RCF(Relational Collaborative Filtering)推荐模型下的ECI(Explainable recommendation based on Counterfactual Inference),在解释保真度上分别提升了4.89和3.38个百分点,在CF集大小上分别降低了63.26%、66.24%,在稀疏度指标上分别提升了1.10和1.66个百分点,可见该机制能有效提升可解释性。 展开更多
关键词 可解释 反事实推理 协同知识图谱 图神经网络 推荐机制
下载PDF
融合协同知识图谱高阶邻居特征的推荐模型
3
作者 于嘉玮 薛涛 《计算机系统应用》 2022年第6期252-258,共7页
在推荐时引入知识图谱中的实体及关系信息是有效缓解冷启动问题的方法. HAN模型首次将基于注意力机制的图神经网络用于异构图,但是并没有充分利用节点的高阶邻居信息.为了解决该问题,提出了一种融合协同知识图谱高阶邻居特征的推荐模型C... 在推荐时引入知识图谱中的实体及关系信息是有效缓解冷启动问题的方法. HAN模型首次将基于注意力机制的图神经网络用于异构图,但是并没有充分利用节点的高阶邻居信息.为了解决该问题,提出了一种融合协同知识图谱高阶邻居特征的推荐模型CKG-HAN.该模型用元路径来连接项目节点,将协同知识图谱分成多个子图,模型的节点注意力层用于聚合子图中每个节点的高阶邻居特征,关系注意力层给不同元路径下的节点特征分配不同的权重,最终得到充分融合语义信息的节点嵌入表示.在MovieLens-1M数据集上进行了Top-K推荐,结果表明本文提出的模型能够有效提高推荐结果的准确性. 展开更多
关键词 协同知识图谱 图注意力网络 推荐系统 注意力机制 元路径 特征融合
下载PDF
知识图谱增强的图神经网络推荐研究进展 被引量:3
4
作者 吴国栋 王雪妮 刘玉良 《计算机工程与应用》 CSCD 北大核心 2023年第4期18-29,共12页
已有推荐方法主要基于用户与项目的历史交互行为,未充分运用用户及项目相关特征信息,推荐效果并不理想。知识图谱(knowledge graph,KG)增强的图神经网络(graph neural network,GNN)推荐,是以用户与项目交互行为构建的交互图为基础,引入... 已有推荐方法主要基于用户与项目的历史交互行为,未充分运用用户及项目相关特征信息,推荐效果并不理想。知识图谱(knowledge graph,KG)增强的图神经网络(graph neural network,GNN)推荐,是以用户与项目交互行为构建的交互图为基础,引入同为图结构的知识图谱,并运用图神经网络技术进行处理,从而实现个性化推荐。深入探讨了现有知识图谱增强的图神经网络推荐研究进展。首先在对图神经网络推荐和知识图谱推荐进行探讨的基础上,从项目知识图谱和协同知识图谱视角,深入分析了当前知识图谱增强的图神经网络推荐取得的相关研究成果;然后从大规模动态知识图谱处理、用户对项目属性的偏好挖掘、知识图谱的图嵌入学习等方面,指出了已有知识图谱增强的图神经网络推荐研究存在的主要问题;最后从动态时序知识图谱增强的GNN推荐、元学习的知识图谱增强GNN推荐、多模态知识图谱增强的GNN推荐、知识图谱增强的GNN跨领域推荐等方面,展望了知识图谱增强的图神经网络推荐未来主要研究方向。 展开更多
关键词 知识图谱 图神经网络 推荐系统 项目知识图谱 协同知识图谱
下载PDF
基于云原生的地理空间知识库管理关键技术与服务方法研究
5
作者 仲腾 张雪英 +5 位作者 许沛 曹敏 陈碧宇 刘启亮 王曙 杨宜舟 《地球信息科学学报》 EI CSCD 北大核心 2024年第9期2013-2025,共13页
地理空间知识的本质在于揭示地理事物和现象的时空分布、时空变化过程及其相互作用规律。地理空间知识库管理系统(GeoKGMS)以“图-文-数”一体化的地理空间知识库引擎为核心,致力于支撑地理空间知识资源的高效汇聚、地理空间知识图谱的... 地理空间知识的本质在于揭示地理事物和现象的时空分布、时空变化过程及其相互作用规律。地理空间知识库管理系统(GeoKGMS)以“图-文-数”一体化的地理空间知识库引擎为核心,致力于支撑地理空间知识资源的高效汇聚、地理空间知识图谱的自动构建和一站式地理空间知识工程建设,旨在形成新一代地理信息系统(GIS)的重要基础平台。本文重点阐述了基于云原生的地理空间知识库管理关键技术,包括云原生的地理空间知识库微服务统一调度技术、人机协同的地理空间知识图谱构建技术、地理空间知识图谱时空混合编码技术、以及多模态地理空间知识存储技术。在此基础上,设计了GeoKGMS的服务框架,实现了地理空间知识库管理、多模态地理空间知识抽取、地理空间知识图谱人机协同构建、地理空间知识推理、地理空间知识图谱质量评估和地理空间知识可视化六大管理服务功能。以喀斯特地貌知识图谱为例,充分发挥机器挖掘和专家知识的优势,实现了可持续的地理空间知识图谱工程化协同共建。 展开更多
关键词 云原生 地理空间知识 知识库管理 人机协同知识图谱构建 知识推理 知识检索 知识存储 知识质量评估
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部