Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copp...Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.展开更多
Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene s...Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.展开更多
In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water ...In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water photocatalytic(PC)reforming is far from satisfaction because of the kinetic limitation.To address these issues,herein,we incorporate PC and TC processes together in a specially designed reactor and realize simultaneous photocatalytic/thermocatalytic(PC‐TC)reforming of methanol in an aqueous phase.Such a design facilitates the synergetic effect of the PC and TC process for H_(2) production due to a lower energy barrier and faster reaction kinetics.The methanol‐water reforming based on the optimized 0.05%Pt@TiO_(2) catalyst delivers an outstanding H_(2) production rate in the PC‐TC process(5.66μmol H_(2)·g^(‒1) catalyst·s^(‒1)),which is about 3 and 7 times than those of the TC process(1.89μmol H_(2)·g^(‒1) catalyst·s^(‒1))and the PC process(0.80μmol H_(2)·g^(‒1) catalyst·s^(‒1)),respectively.Isotope tracer experiments,active intermediate trapping experiments,and theoretical calculations demonstrate that the photo‐generated holes and hydroxyl radicals could enhance the methanol dehydrogenation,water molecule splitting,and water‐gas shift reaction,while high temperature accelerates reaction kinetics.The proposed PC‐TC reforming of methanol for hydrogen production can be a promising technology to solve the energy and environmental issue in the closed‐loop hydrogen economy in the near future.展开更多
The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode...The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry CCA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25× 10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/Cmol.s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode.展开更多
文摘Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.
基金supported by the National Natural Science Foundation of China (21173089 and 21373093)the Fundamental Research Funds for the Central Universities of China (2014ZZGH019)the Cooperative Innovation Center of Hubei Province
文摘Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.
文摘In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water photocatalytic(PC)reforming is far from satisfaction because of the kinetic limitation.To address these issues,herein,we incorporate PC and TC processes together in a specially designed reactor and realize simultaneous photocatalytic/thermocatalytic(PC‐TC)reforming of methanol in an aqueous phase.Such a design facilitates the synergetic effect of the PC and TC process for H_(2) production due to a lower energy barrier and faster reaction kinetics.The methanol‐water reforming based on the optimized 0.05%Pt@TiO_(2) catalyst delivers an outstanding H_(2) production rate in the PC‐TC process(5.66μmol H_(2)·g^(‒1) catalyst·s^(‒1)),which is about 3 and 7 times than those of the TC process(1.89μmol H_(2)·g^(‒1) catalyst·s^(‒1))and the PC process(0.80μmol H_(2)·g^(‒1) catalyst·s^(‒1)),respectively.Isotope tracer experiments,active intermediate trapping experiments,and theoretical calculations demonstrate that the photo‐generated holes and hydroxyl radicals could enhance the methanol dehydrogenation,water molecule splitting,and water‐gas shift reaction,while high temperature accelerates reaction kinetics.The proposed PC‐TC reforming of methanol for hydrogen production can be a promising technology to solve the energy and environmental issue in the closed‐loop hydrogen economy in the near future.
基金provided by K.N.Toosi University of Technology Research Council to conduct this research
文摘The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry CCA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25× 10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/Cmol.s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode.