期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
斜坡失稳时间的协同预测模型 被引量:68
1
作者 黄润秋 许强 《山地研究》 CSCD 1997年第1期7-12,共6页
斜坡岩体由小变形到大变形乃至滑坡的发生,实质上是由组成斜坡的各子系统协同作用的结果.将协同学引入斜坡的稳定性预测评价中,并提出了一种新的斜坡失稳时间预测模型──协同预测模型.经实例检验,该模型预测精度较高,可用于滑坡... 斜坡岩体由小变形到大变形乃至滑坡的发生,实质上是由组成斜坡的各子系统协同作用的结果.将协同学引入斜坡的稳定性预测评价中,并提出了一种新的斜坡失稳时间预测模型──协同预测模型.经实例检验,该模型预测精度较高,可用于滑坡的短期或临滑预报. 展开更多
关键词 斜坡失稳 预测模型 滑坡 协同预测模型
下载PDF
基于背景值修正的协同预测模型
2
作者 周琪 郑振东 +3 位作者 唐聪 刘静 侯雪姣 崔巍 《武汉理工大学学报(交通科学与工程版)》 2014年第5期1140-1143,共4页
斜坡岩体变形到滑坡的发生,实质上是由组成斜坡的各子系统协同作用的结果.通过将协同学引入斜坡的稳定性预测评价中,提出了协同预测模型[1].而背景值公式是影响该模型预测精度的关键因素之一,传统的背景值公式实际是采用梯形公式近似的... 斜坡岩体变形到滑坡的发生,实质上是由组成斜坡的各子系统协同作用的结果.通过将协同学引入斜坡的稳定性预测评价中,提出了协同预测模型[1].而背景值公式是影响该模型预测精度的关键因素之一,传统的背景值公式实际是采用梯形公式近似的计算曲线所围成的面积,经研究则通过曲线函数积分的方式对协同预测模型中的背景值进行了修正,使其计算的面积更加的接近实际值,以提高原有协同预测模型的精度和预测的准确性.并以甘肃省永靖县黄茨滑坡为实例进行了检验,其绝对误差减少了2d2h,相对误差减小了2.7%,充分说明改进的预测模型用于滑坡短期预报的有效性、可行性,而且修正后模型所需位移数据时间间隔较大,在一定程度上节省了监测数据所需的费用. 展开更多
关键词 滑坡 协同预测模型 背景值 修正
下载PDF
一溴三氟丙烯-氮气复合灭火介质灭火性能研究 被引量:4
3
作者 周彪 周晓猛 +1 位作者 赵智 张永丰 《安全与环境学报》 CAS CSCD 北大核心 2010年第3期162-166,共5页
考察了一溴三氟丙烯(简称BTP)与氮气(N_2)复合灭火介质的灭火性能。基于多组分分压原理论述了预混技术的可行性和喷头初始压力对复合灭火介质灭火性能的影响,然后通过协同作用理论模型研究了一溴三氟丙烯与氮气复合灭火介质的协同作用... 考察了一溴三氟丙烯(简称BTP)与氮气(N_2)复合灭火介质的灭火性能。基于多组分分压原理论述了预混技术的可行性和喷头初始压力对复合灭火介质灭火性能的影响,然后通过协同作用理论模型研究了一溴三氟丙烯与氮气复合灭火介质的协同作用。通过临界灭火试验平台研究了不同比例BTP-N_2复合灭火介质的灭火临界条件,通过喷头释放压力对复合灭火介质影响试验平台分析喷头压力对同比例复合灭火介质灭火性能的影响规律。结果表明,BTP-N_2复合灭火介质的灭火过程中存在协同效应;同比例下的BTP-N_2复合灭火介质,喷头压力与释放量及灭火时间呈负相关性。 展开更多
关键词 安全学 BTP—N2复合灭火介质 协同作用预测模型 临界灭火浓度 惰性气体 喷头释放压力
下载PDF
Knowledge mining collaborative DESVM correction method in short-term load forecasting 被引量:3
4
作者 牛东晓 王建军 刘金朋 《Journal of Central South University》 SCIE EI CAS 2011年第4期1211-1216,共6页
Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used t... Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used to consider the load time series trend forecasting,intelligence forecasting DESVR model was applied to estimate the non-linear influence,and knowledge mining methods were applied to correct the errors caused by irregular events.In order to prove the effectiveness of the proposed model,an application of the daily maximum load forecasting was evaluated.The experimental results show that the DESVR model improves the mean absolute percentage error(MAPE) from 2.82% to 2.55%,and the knowledge rules can improve the MAPE from 2.55% to 2.30%.Compared with the single ARMA forecasting method and ARMA combined SVR forecasting method,it can be proved that TIK method gains the best performance in short-term load forecasting. 展开更多
关键词 load forecasting support vector regression knowledge mining ARMA differential evolution
下载PDF
A SON solution for cell outage detection using a cooperative prediction approach
5
作者 Wang Yuting Liu Nan +1 位作者 Pan Zhiwen You Xiaohu 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期168-173,共6页
In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection ... In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells. 展开更多
关键词 cell outage detection cooperative prediction collaborative filtering grey model
下载PDF
Preference transfer model in collaborative filtering for implicit data
6
作者 Bin JU Yun-tao QIAN Min-chao YE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期489-500,共12页
Generally, predicting whether an item will be liked or disliked by active users, and how much an item will be liked, is a main task of collaborative filtering systems or recommender systems. Recently, predicting most ... Generally, predicting whether an item will be liked or disliked by active users, and how much an item will be liked, is a main task of collaborative filtering systems or recommender systems. Recently, predicting most likely bought items for a target user, which is a subproblem of the rank problem of collaborative filtering, became an important task in collaborative filtering. Traditionally, the prediction uses the user item co-occurrence data based on users' buying behaviors. However, it is challenging to achieve good prediction performance using traditional methods based on single domain information due to the extreme sparsity of the buying matrix. In this paper, we propose a novel method called the preference transfer model for effective cross-domain collaborative filtering. Based on the preference transfer model, a common basis item-factor matrix and different user-factor matrices are factorized.Each user-factor matrix can be viewed as user preference in terms of browsing behavior or buying behavior. Then,two factor-user matrices can be used to construct a so-called ‘preference dictionary' that can discover in advance the consistent preference of users, from their browsing behaviors to their buying behaviors. Experimental results demonstrate that the proposed preference transfer model outperforms the other methods on the Alibaba Tmall data set provided by the Alibaba Group. 展开更多
关键词 Recommender systems Collaborative filtering Preference transfer model Cross domain Implicit data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部