在线、实时、准确监测舰船螺旋桨推力对船-机-桨匹配设计、舰船快速性预报及推进轴系健康管理等具有重要意义。然而,受轴系振动及环境干扰等测量噪声影响,螺旋桨推力产生的微弱应变信号易被测量噪声淹没,导致难以准确测量推力。当前,一...在线、实时、准确监测舰船螺旋桨推力对船-机-桨匹配设计、舰船快速性预报及推进轴系健康管理等具有重要意义。然而,受轴系振动及环境干扰等测量噪声影响,螺旋桨推力产生的微弱应变信号易被测量噪声淹没,导致难以准确测量推力。当前,一些常用的信号降噪方法,比如傅里叶变换、小波分析等均是基于纯数据降噪,未考虑测量数据中潜藏的力学机制。不同于这类降噪方法,Kalman滤波可同时考虑测量数据噪声及数据中的力学机制,对目标实现最小方差无偏估计,因而有更高的估计精度。因此,本文利用Kalman滤波结合应变测量信号提出一种螺旋桨推力高精度、在线辨识方法。以恒定转速、变转速及低频波动转速3种工况为例,研究了不同信噪比下本文方法的推力辨识精度与鲁棒性。研究表明,在信噪比仅为20 d B时,推力辨识最大相对误差仅为4.85%,因此本文方法在低信噪比下仍有很高的辨识精度与鲁棒性。同时,本文提出方法属于时域辨识方法,在转速突变、螺旋桨缠绕渔网等突发工况时亦能实时跟踪推力变化,因此可用于螺旋桨推力及轴系状态的在线、实时监测。展开更多
协同滤波去噪算法能充分利用混沌信号的自相似结构特征,具有良好的去噪性能。本文针对传统的自适应协同滤波算法中相似块提取不灵活以及聚合重构过于简单等问题,通过错位搜索的方法优化了相似块的提取,并采用动态时间归整算法(DTW)对聚...协同滤波去噪算法能充分利用混沌信号的自相似结构特征,具有良好的去噪性能。本文针对传统的自适应协同滤波算法中相似块提取不灵活以及聚合重构过于简单等问题,通过错位搜索的方法优化了相似块的提取,并采用动态时间归整算法(DTW)对聚合重构部分进行了改进。仿真实验的结果表明,在不同的噪声水平下,本文提出的方法均优于传统的自适应协同滤波算法。相较于小波滤波、高斯滤波以及经验模态分解等去噪方法,本文提出的方法在处理长期的混沌信号时具有更好的表现。The collaborative filter denoising algorithm can make full use of the self-similar structure characteristics of chaotic signals and has good performance. In this paper, for the problems of inflexible extraction of similar blocks and oversimplified aggregate reconstruction in the traditional adaptive collaborative filtering algorithm, the dislocation search method is used to optimize the extraction of similar blocks, and the Dynamic Time Warping (DTW) is used to improve the aggregation reconstruction. The simulation results show that the proposed method is superior to the traditional adaptive collaborative filtering algorithm under different noise levels. Compared with wavelet denoising, Gaussian filtering and empirical mode decomposition, the proposed method has better performance in dealing with long-term chaotic signals.展开更多
文摘在线、实时、准确监测舰船螺旋桨推力对船-机-桨匹配设计、舰船快速性预报及推进轴系健康管理等具有重要意义。然而,受轴系振动及环境干扰等测量噪声影响,螺旋桨推力产生的微弱应变信号易被测量噪声淹没,导致难以准确测量推力。当前,一些常用的信号降噪方法,比如傅里叶变换、小波分析等均是基于纯数据降噪,未考虑测量数据中潜藏的力学机制。不同于这类降噪方法,Kalman滤波可同时考虑测量数据噪声及数据中的力学机制,对目标实现最小方差无偏估计,因而有更高的估计精度。因此,本文利用Kalman滤波结合应变测量信号提出一种螺旋桨推力高精度、在线辨识方法。以恒定转速、变转速及低频波动转速3种工况为例,研究了不同信噪比下本文方法的推力辨识精度与鲁棒性。研究表明,在信噪比仅为20 d B时,推力辨识最大相对误差仅为4.85%,因此本文方法在低信噪比下仍有很高的辨识精度与鲁棒性。同时,本文提出方法属于时域辨识方法,在转速突变、螺旋桨缠绕渔网等突发工况时亦能实时跟踪推力变化,因此可用于螺旋桨推力及轴系状态的在线、实时监测。
文摘协同滤波去噪算法能充分利用混沌信号的自相似结构特征,具有良好的去噪性能。本文针对传统的自适应协同滤波算法中相似块提取不灵活以及聚合重构过于简单等问题,通过错位搜索的方法优化了相似块的提取,并采用动态时间归整算法(DTW)对聚合重构部分进行了改进。仿真实验的结果表明,在不同的噪声水平下,本文提出的方法均优于传统的自适应协同滤波算法。相较于小波滤波、高斯滤波以及经验模态分解等去噪方法,本文提出的方法在处理长期的混沌信号时具有更好的表现。The collaborative filter denoising algorithm can make full use of the self-similar structure characteristics of chaotic signals and has good performance. In this paper, for the problems of inflexible extraction of similar blocks and oversimplified aggregate reconstruction in the traditional adaptive collaborative filtering algorithm, the dislocation search method is used to optimize the extraction of similar blocks, and the Dynamic Time Warping (DTW) is used to improve the aggregation reconstruction. The simulation results show that the proposed method is superior to the traditional adaptive collaborative filtering algorithm under different noise levels. Compared with wavelet denoising, Gaussian filtering and empirical mode decomposition, the proposed method has better performance in dealing with long-term chaotic signals.