单人制机组运行(Single Pilot Operation,SPO)场景中,飞行员负荷与疲劳会使飞机操控精度降低,甚至出现飞行员诱发振荡(Pilot Induced Oscillation,PIO)现象。为缓解PIO问题,分析了飞行员操作增益和时延对飞机振荡的影响作用,并建立基于...单人制机组运行(Single Pilot Operation,SPO)场景中,飞行员负荷与疲劳会使飞机操控精度降低,甚至出现飞行员诱发振荡(Pilot Induced Oscillation,PIO)现象。为缓解PIO问题,分析了飞行员操作增益和时延对飞机振荡的影响作用,并建立基于生理指标和外部条件的认知能力评估模型,以设计飞行员诱发振荡自适应调节策略。通过建立认知能力与飞行员操作水平的对应关系,实现了基于飞行员身体状态和外部条件所需为输入的飞行员诱发振荡抑制过程。以A320机型为例设置模拟场景,采用MATLAB进行仿真。结果显示:在诱发振荡初期,飞机驾驶超调量降低了约25%;50 s内,相同参数下的诱发振荡超调量平均减少了约66%,并逐渐步入稳定状态。这表明基于认知能力评估的自适应调节模型能够缓解单一飞行员工作负荷和疲劳,增加飞行员操纵的动态和静态稳定性,有效抑制了单人制机组运行时由人的因素引起的诱发振荡问题。展开更多
Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or ...Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or frequent manufacturing changes. The shop-floor control method, presented in this paper, offers a solution for the facing problem of fast and easy reconfiguration. The hardware of the controller designed modular with software components for online configuration. This solution allows sensor integration on different levels for every part of the manufacturing cell. With unified programming language and the machine specific controllers (post-processing) the cells can be defined easily by different types of human-machine interaction. The shop-floor control architecture is implemented and validated on an Adept SCARA (selective compliance assembly robot arm) robot. The robot is driven by standalone, low-level, interchangeable, software and hardware components.展开更多
文摘Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or frequent manufacturing changes. The shop-floor control method, presented in this paper, offers a solution for the facing problem of fast and easy reconfiguration. The hardware of the controller designed modular with software components for online configuration. This solution allows sensor integration on different levels for every part of the manufacturing cell. With unified programming language and the machine specific controllers (post-processing) the cells can be defined easily by different types of human-machine interaction. The shop-floor control architecture is implemented and validated on an Adept SCARA (selective compliance assembly robot arm) robot. The robot is driven by standalone, low-level, interchangeable, software and hardware components.