Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides c...Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na^+/K^+-ATPase α-subunit eDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of eDNA end methods. Analysis of the nucleotide sequence revealed that the eDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na^+/K^+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of arnino acid sequences showed that the P. tritubereulatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na^+/K^+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.展开更多
This paper analyses a model for the production of bioethanol that has been calibrated against laboratory data by previous researchers. The authors investigate the improvement in productivity that can be obtained when ...This paper analyses a model for the production of bioethanol that has been calibrated against laboratory data by previous researchers. The authors investigate the improvement in productivity that can be obtained when a centrifuge is used to recycle cells that would otherwise leave the reactor system in the efficient stream. The authors compare the performance of a double reactor cascade, possible employing a settling unit, against that of a single reactor. For the former case, this paper considers the reactor configuration in which the settling unit recycles from the effluent stream of a reactor back in the influent of the same reactor.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A409)the National Natural Science Foundation of China(No.41306177)the Special Scientific Research Funds for Central Non-Profit Institutes,Yellow Sea Fisheries Research Institutes(No.20603022013027)
文摘Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na^+/K^+-ATPase α-subunit eDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of eDNA end methods. Analysis of the nucleotide sequence revealed that the eDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na^+/K^+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of arnino acid sequences showed that the P. tritubereulatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na^+/K^+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.
文摘This paper analyses a model for the production of bioethanol that has been calibrated against laboratory data by previous researchers. The authors investigate the improvement in productivity that can be obtained when a centrifuge is used to recycle cells that would otherwise leave the reactor system in the efficient stream. The authors compare the performance of a double reactor cascade, possible employing a settling unit, against that of a single reactor. For the former case, this paper considers the reactor configuration in which the settling unit recycles from the effluent stream of a reactor back in the influent of the same reactor.