Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustnes...Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.展开更多
We compared two different strategies to increase the catches oflps typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone ble...We compared two different strategies to increase the catches oflps typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone blends, targeting males and females respectively, in closely-spaced traps forming a barrier around forest stands. The second strategy, the single trap approach, used widely-spaced traps that were all baited with the same lure and intended to trap the highest possible numbers of males without compromising trapping of females. In the blend used for the barrier traps targeting primarily males, with a lower percentage of (4S)-cis-verbenol (cV), the (-)-α-pinene was replaced step wise with (+)-limonene at rates of 0%, 1%, 10%, 35%, 60% and 90%. This replacement had no significant effect on the numbers of responding 1. typographus males, but there was a slight effect on the percentage of males caught. In the attractant blend for the barrier traps targeting females, with a higher percentage of cV, the 2-methyl-3-buten-2-ol (MB) was replaced with 1-methoxy-2-propanol (MP) in a similar fashion as for the male-specific blends. The replacement did not significantly affect the catch of females. Thus, it is pos- sible to use the MP in the blend with cV and ipsdienol without significant change in catch efficacy. In the blends for single traps, the (-)-α- pinene was replaced with (+)-limonene and MB with MP. The replacement of (-)-α-pinene had only a slight effect on the percentage of males, but the results suggest that replacing MB with MP in the blend will not significantly reduce trapping efficacy.展开更多
基金Supported by the National Natural Science Foundation of China (50505017)Fok Ying Tung Edu-cation Foundation (111056)+1 种基金the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics (BCXJ08-07)the New Century Excellent Talents in University,China (NCET-08)~~
文摘Future manufacturing systems need to cope with frequent changes and disturbances, therefore their control architectures require constant adaptability, agility, stability, self-organization, intelligence, and robustness. Bio-inspired manufacturing system can well satisfy these requirements. For this purpose, by referencing the biological organization structure and the mechanism, a bio-inspired manufacturing cell is presented from a novel view, and then a bio-inspired self-adaptive manufacturing model is established based on the ultra-short feedback mechanism of the neuro-endocrine system. A hio-inspired self-adaptive manufacturing system coordinated model is also established based on the neuro-endocrine-immunity system (NEIS). Finally, an example based on pheromone communication mechanism indicates that the robustness of the whole manufacturing system is improved by bio-inspired technologies.
基金supported by Slovak Research and Development Agency (APVV-51-P06005 and APVV-27-P05205)the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (2/6153/26)
文摘We compared two different strategies to increase the catches oflps typographus (L.), particularly males, in pheromone-baited traps. The first of these strategies, the barrier approach, used alternating pheromone blends, targeting males and females respectively, in closely-spaced traps forming a barrier around forest stands. The second strategy, the single trap approach, used widely-spaced traps that were all baited with the same lure and intended to trap the highest possible numbers of males without compromising trapping of females. In the blend used for the barrier traps targeting primarily males, with a lower percentage of (4S)-cis-verbenol (cV), the (-)-α-pinene was replaced step wise with (+)-limonene at rates of 0%, 1%, 10%, 35%, 60% and 90%. This replacement had no significant effect on the numbers of responding 1. typographus males, but there was a slight effect on the percentage of males caught. In the attractant blend for the barrier traps targeting females, with a higher percentage of cV, the 2-methyl-3-buten-2-ol (MB) was replaced with 1-methoxy-2-propanol (MP) in a similar fashion as for the male-specific blends. The replacement did not significantly affect the catch of females. Thus, it is pos- sible to use the MP in the blend with cV and ipsdienol without significant change in catch efficacy. In the blends for single traps, the (-)-α- pinene was replaced with (+)-limonene and MB with MP. The replacement of (-)-α-pinene had only a slight effect on the percentage of males, but the results suggest that replacing MB with MP in the blend will not significantly reduce trapping efficacy.