We construct an example of an isolated singularity f: (C3,0)→(C,0) for which oneof the polar relative monodromies is not of finite order,by using a nonisolated singularity with transversal type the A'Campo example.
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-value...Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.展开更多
文摘We construct an example of an isolated singularity f: (C3,0)→(C,0) for which oneof the polar relative monodromies is not of finite order,by using a nonisolated singularity with transversal type the A'Campo example.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
文摘Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.