本文研究了Banach空间中上三角算子矩阵MC(A C 0 B)∈L(X■Y)的局部谱性质,其中A∈L(X),B∈L(Y),C∈L(Y,X),X,Y是无穷维复Banach空间,L(X,Y)表示X到Y的所有有界线性算子.首先考察了MC的单值扩张性,借助于向量值解析函数和解析核等工具...本文研究了Banach空间中上三角算子矩阵MC(A C 0 B)∈L(X■Y)的局部谱性质,其中A∈L(X),B∈L(Y),C∈L(Y,X),X,Y是无穷维复Banach空间,L(X,Y)表示X到Y的所有有界线性算子.首先考察了MC的单值扩张性,借助于向量值解析函数和解析核等工具给出了集合S(MC)={λ∈C:MC在λ没有单值扩张性}的刻画,并得到对任意C∈L(Y,X)等式S(MC)=S(A)∪S(B)都成立的条件.进一步,研究了MC的单值扩张性扰动,得到了对于给定A∈L(X),B∈L(Y),等式S(MC)=S(A)∪(B)成立时C所需的条件.同时,举例说明了这些条件的合理性.最后,把所得结果运用到上三角算子矩阵的谱和局部谱上,得到了σ(MC)=σ(A)∪σ(B)和σMMC(x■0)=σA(x)成立的条件,并给出了MC局部谱子空间的一个刻画.展开更多
文摘本文研究了Banach空间中上三角算子矩阵MC(A C 0 B)∈L(X■Y)的局部谱性质,其中A∈L(X),B∈L(Y),C∈L(Y,X),X,Y是无穷维复Banach空间,L(X,Y)表示X到Y的所有有界线性算子.首先考察了MC的单值扩张性,借助于向量值解析函数和解析核等工具给出了集合S(MC)={λ∈C:MC在λ没有单值扩张性}的刻画,并得到对任意C∈L(Y,X)等式S(MC)=S(A)∪S(B)都成立的条件.进一步,研究了MC的单值扩张性扰动,得到了对于给定A∈L(X),B∈L(Y),等式S(MC)=S(A)∪(B)成立时C所需的条件.同时,举例说明了这些条件的合理性.最后,把所得结果运用到上三角算子矩阵的谱和局部谱上,得到了σ(MC)=σ(A)∪σ(B)和σMMC(x■0)=σA(x)成立的条件,并给出了MC局部谱子空间的一个刻画.