We study the scattering process of photons confined in a one-dimensional optical waveguide by a laser controlled atomic ensemble. The investigation leads to an alternative setup of quantum node controlling the coheren...We study the scattering process of photons confined in a one-dimensional optical waveguide by a laser controlled atomic ensemble. The investigation leads to an alternative setup of quantum node controlling the coherent transfer of single photon in such one dimensional continuum. To exactly solve the effective scattering equations by using the discrete coordinate approach, we simulate the linear waveguide as a coupled resonator array at the high energy limit. We generally calculate the transmission eoet^cients and its vanishing at resonance reflects the good controllability of our scheme. We also show that there exist two bound states to describe the localize photons around the cavity.展开更多
基金Supported by the Natural Science Foundation of China under Grant Nos.10775048,10704023,10775048,and 10325523the National Fundamental Research Program of China under Grant No.2007CB925204the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.07C579
文摘We study the scattering process of photons confined in a one-dimensional optical waveguide by a laser controlled atomic ensemble. The investigation leads to an alternative setup of quantum node controlling the coherent transfer of single photon in such one dimensional continuum. To exactly solve the effective scattering equations by using the discrete coordinate approach, we simulate the linear waveguide as a coupled resonator array at the high energy limit. We generally calculate the transmission eoet^cients and its vanishing at resonance reflects the good controllability of our scheme. We also show that there exist two bound states to describe the localize photons around the cavity.