常规化学方法检测农药残留不仅对样品具有破坏性,而且费时费力。本文以激光诱导荧光结合高光谱图像技术为手段,对脐橙表面的敌敌畏农药残留进行光谱无损检测;实验方法是在脐橙表面,喷施用自来水配制的不同浓度的敌敌畏农药溶液,在实验...常规化学方法检测农药残留不仅对样品具有破坏性,而且费时费力。本文以激光诱导荧光结合高光谱图像技术为手段,对脐橙表面的敌敌畏农药残留进行光谱无损检测;实验方法是在脐橙表面,喷施用自来水配制的不同浓度的敌敌畏农药溶液,在实验室条件下风干后,采集激光诱导荧光高光谱图像,再用气相色谱法检测脐橙表面的农药残留量,应用偏最小二乘(Partial least squares,PLS)方法建立农药残留的预测模型,并找出最佳光谱区间,然后应用支持向量机(Support vectormachine,SVM)方法在最佳光谱区间的基础上建立农药残留的预测模型;所建模型结果其预测集样品的农药残留量实测值(0.4862~10.3791mg/kg)和预测值之间的相关系数为0.8101;实验结果说明,以激光诱导荧光结合高光谱技术为手段的无损检测技术,在检测脐橙农药残留方面是有可行性的。展开更多
文摘目的探究激光诱导荧光(laser induced fluorescence,LIF)技术检测花生中黄曲霉毒素B_(1)(aflatoxin B_(1),AFB_(1))的可行性,定性和定量分析花生中的AFB_(1)。方法制备不同浓度梯度的污染花生,经LIF系统采集荧光光谱,平滑后分析光谱数据结构。基于全波长光谱使用5种不同建模方法对污染花生定性判别,采用偏最小二乘法回归(partial least squares regression,PLSR)和BP神经网络(BP neural networks,BPNN)进行定量预测。通过竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)提取特征波长,研究其对定性和定量预测的影响。结果对于全波长光谱数据,线性核函数的支持向量机[support vector machine with linear kernel function,SVM(Linear)]建立的判别模型效果最优,预测正确率100.00%。PLSR和BPNN均获得较好的定量预测效果,剩余预测偏差(residual predictive deviation,RPD)>3.0,检出限(limit of detection,LOD)<20μg/kg;对于特征光谱数据,SVM(Linear)定性判别预测正确率93.94%,F1值为0.94,受试者工作特征(receiver operating characteristic curve,ROC)曲线下面积(area under the curve,AUC)为0.989。建立的PLSR模型性能优于未提取特征波长的两种定量模型,RPD为3.36,LOD为14.76μg/kg。结论LIF技术检测花生中的AFB_(1)简单快速,定性定量预测模型准确性好,具有一定可行性。
文摘常规化学方法检测农药残留不仅对样品具有破坏性,而且费时费力。本文以激光诱导荧光结合高光谱图像技术为手段,对脐橙表面的敌敌畏农药残留进行光谱无损检测;实验方法是在脐橙表面,喷施用自来水配制的不同浓度的敌敌畏农药溶液,在实验室条件下风干后,采集激光诱导荧光高光谱图像,再用气相色谱法检测脐橙表面的农药残留量,应用偏最小二乘(Partial least squares,PLS)方法建立农药残留的预测模型,并找出最佳光谱区间,然后应用支持向量机(Support vectormachine,SVM)方法在最佳光谱区间的基础上建立农药残留的预测模型;所建模型结果其预测集样品的农药残留量实测值(0.4862~10.3791mg/kg)和预测值之间的相关系数为0.8101;实验结果说明,以激光诱导荧光结合高光谱技术为手段的无损检测技术,在检测脐橙农药残留方面是有可行性的。