It is considered that three identical two-level atoms are separately trapped in three coupled single-mode optical cavities, and each atom resonantly interacts with cavity via a one-photon transition. The tripartite en...It is considered that three identical two-level atoms are separately trapped in three coupled single-mode optical cavities, and each atom resonantly interacts with cavity via a one-photon transition. The tripartite entanglement dynamics among atoms is studied. The influence of cavity-cavity coupling constant on the tripartite entanglement among atoms is discussed. The results obtained using the numerical method show that the tripartite entanglement among atoms has a nonlinear relation with the cavity-cavity coupling coefficient. On the other hand, the three-body entanglement is the result of the coherent superposition of the two-body entanglements.展开更多
We quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and the polymeric dielectric Gel-Film) and c...We quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and the polymeric dielectric Gel-Film) and conducting substrates (Au and few-layer graphene). We find that the substrate can affect the Raman and PL emission in a twofold manner. First, the absorption and emission intensities are strongly modulated by the constructive/destructive interference within the different substrates. Second, the position of the Alg Raman mode peak and the spectral weight between neutral and charged excitons in the PL spectra are modified by the substrate. We attribute this effect to substrate-induced changes in the doping level and in the decay rates of the excitonic transitions. Our results provide a method to quantitatively study the Raman and PL emission from MoSa-based vertical heterostructures and represent the first step in ad hoc tuning the PL emission of 1L MoS2 by selecting the proper substrate.展开更多
基金supported by the Natural Science Foundation of Fujian Province (No.2011J01018)the Department of Education of Fujian Province (No.JA12327)
文摘It is considered that three identical two-level atoms are separately trapped in three coupled single-mode optical cavities, and each atom resonantly interacts with cavity via a one-photon transition. The tripartite entanglement dynamics among atoms is studied. The influence of cavity-cavity coupling constant on the tripartite entanglement among atoms is discussed. The results obtained using the numerical method show that the tripartite entanglement among atoms has a nonlinear relation with the cavity-cavity coupling coefficient. On the other hand, the three-body entanglement is the result of the coherent superposition of the two-body entanglements.
文摘We quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and the polymeric dielectric Gel-Film) and conducting substrates (Au and few-layer graphene). We find that the substrate can affect the Raman and PL emission in a twofold manner. First, the absorption and emission intensities are strongly modulated by the constructive/destructive interference within the different substrates. Second, the position of the Alg Raman mode peak and the spectral weight between neutral and charged excitons in the PL spectra are modified by the substrate. We attribute this effect to substrate-induced changes in the doping level and in the decay rates of the excitonic transitions. Our results provide a method to quantitatively study the Raman and PL emission from MoSa-based vertical heterostructures and represent the first step in ad hoc tuning the PL emission of 1L MoS2 by selecting the proper substrate.