单分子监测与操纵(Single-Molecule Observation and Manipulation)综合利用光学工具、荧光标记和扫描探针显微技术对单分子进行成像和监测。过去在观测大分子行为时,必须设法使样本中反应同步进行,以获取相对准确的分布信息。而单分子...单分子监测与操纵(Single-Molecule Observation and Manipulation)综合利用光学工具、荧光标记和扫描探针显微技术对单分子进行成像和监测。过去在观测大分子行为时,必须设法使样本中反应同步进行,以获取相对准确的分布信息。而单分子监测与操纵技术的出现,使得研究生理环境下的实时反应中大分子的构型、分布和反应进程成为可能,并为进一步解释DNA转录、RNA聚合、动力蛋白和蛋白质折叠机理等一系列过程提供了有力的研究手段。使用扫描隧道显微镜(Scanning Tunneling Microscope,STM),可以更为深刻地观察分子的量子电动力学行为,理解分子水平上力学作用、电磁作用及化学作用的相互影响,并以此为基础设计极其高效的纳米器件。对上述三个领域(光学工具、荧光标记、扫描探针显微技术)做了简要介绍,并重点阐述其在生物大分子研究中的具体应用。展开更多
Many environmental factors can cause DNA damage, such as radiation, heat, oxygen free radical, etc., which can induce mutation during DNA replication. Meanwhile, DNA molecules are subjected to various mechanical force...Many environmental factors can cause DNA damage, such as radiation, heat, oxygen free radical, etc., which can induce mutation during DNA replication. Meanwhile, DNA molecules are subjected to various mechanical forces in numerous biological processes. However, it is unknown whether the mechanical force would induce DNA damage and introduce mutation during DNA replication. With the combination of single-molecule manipulation based on atomic force microscopy (AFM), single molecular polymerase chain reaction (SM-PCR) and Sanger's sequencing, we investigated the effect of mechanical force on DNA. The results show that mechanical force can cause DNA damage and induce DNA mutation during amplification.展开更多
基金Supported by National Basic Research Program of China(973 Program Nos.2007CB936000 and 2012CB932600)National Natural Science Foundation of China(No.21073222)Chinese Academy of Sciences(No.KJCX2-EW-N03)
文摘Many environmental factors can cause DNA damage, such as radiation, heat, oxygen free radical, etc., which can induce mutation during DNA replication. Meanwhile, DNA molecules are subjected to various mechanical forces in numerous biological processes. However, it is unknown whether the mechanical force would induce DNA damage and introduce mutation during DNA replication. With the combination of single-molecule manipulation based on atomic force microscopy (AFM), single molecular polymerase chain reaction (SM-PCR) and Sanger's sequencing, we investigated the effect of mechanical force on DNA. The results show that mechanical force can cause DNA damage and induce DNA mutation during amplification.