利用分子笼封装前驱体而后热解的策略,制备了具有高催化活性的氮掺杂多孔碳(NPC)负载孤立的单个Fe原子(Fe-ISAs/NPC)电催化剂,并作为对电极用于染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)。通过电化学测试研究了Fe-ISAs/NP...利用分子笼封装前驱体而后热解的策略,制备了具有高催化活性的氮掺杂多孔碳(NPC)负载孤立的单个Fe原子(Fe-ISAs/NPC)电催化剂,并作为对电极用于染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)。通过电化学测试研究了Fe-ISAs/NPC对电极的膜厚对DSSCs光电性能的影响。测试结果表明,Fe-ISAs/NPC对电极的膜厚为16μm时,DSSCs的光电转换效率最高(8.03%)。展开更多
Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly ...Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.展开更多
Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,...Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,which,in turn,affect the intrinsic activity of 2D materials.Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene(V_(2)CO_(2))-supported transition metal(TM)SAs,including a series of 3d,4d,and 5d metals,as oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR)catalysts.The combination of TM SAs and V_(2)CO_(2)changes their electronic structure and enriches the active sites,and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR.Among the investigated TM-V_(2)CO_(2)models,Sc-,Mn-,Rh-,and PtMCCh showed high ORR activity,while Sc-,Ti-,V-,Cr-,and Mn-V_(2)CO_(2)exhibited high HOR activity.Specifically,Mn-and Sc-V_(2)CO_(2)are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability.This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts.展开更多
文摘利用分子笼封装前驱体而后热解的策略,制备了具有高催化活性的氮掺杂多孔碳(NPC)负载孤立的单个Fe原子(Fe-ISAs/NPC)电催化剂,并作为对电极用于染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)。通过电化学测试研究了Fe-ISAs/NPC对电极的膜厚对DSSCs光电性能的影响。测试结果表明,Fe-ISAs/NPC对电极的膜厚为16μm时,DSSCs的光电转换效率最高(8.03%)。
文摘Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.
文摘Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,which,in turn,affect the intrinsic activity of 2D materials.Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene(V_(2)CO_(2))-supported transition metal(TM)SAs,including a series of 3d,4d,and 5d metals,as oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR)catalysts.The combination of TM SAs and V_(2)CO_(2)changes their electronic structure and enriches the active sites,and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR.Among the investigated TM-V_(2)CO_(2)models,Sc-,Mn-,Rh-,and PtMCCh showed high ORR activity,while Sc-,Ti-,V-,Cr-,and Mn-V_(2)CO_(2)exhibited high HOR activity.Specifically,Mn-and Sc-V_(2)CO_(2)are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability.This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts.