The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the perfo...The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.展开更多
We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitr...We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not, our teleportation scheme can always be probabilistically realized. The success prohability of teleportation is determined by the smaller coemcients of the two initially entangled atom pairs.展开更多
A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-...A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.展开更多
A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atom...A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atomicspontaneous emission is suppressed.The scheme is simple.It does not need to adjust the interaction time accurately,anddoes not need to prepare the cavity field in one-photon state.Numerical simulation shows that the successful probabilityof the scheme increases with the increasing of the atom number.展开更多
Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupli...Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupling constants between atoms,the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed.The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms,the atomic initial states and the photon number of transition.The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is β11〉.When the initial state of two atoms is β01〉,the entanglement of two atoms displays periodic oscillation behavior.And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.On the other hand,when the initial state is β00〉 or β10〉,the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.展开更多
In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state ...In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state with a single-photon emitted have to be far smaller than 1 to obtain an acceptable entangled state.Based on strong dipole-dipole interaction between two Rydberg atoms,two simultaneous excitations in an atomic ensemble are greatly suppressed,which makes it possible to excite a mesoscopic cold atomic ensemble into a near-ideal singly-excited symmetric collective state accompanied by a signal-photon with near unity success probability.展开更多
基金This work is supported by the National Key Research and Development Program(No.2018YFA0208600)the National Natural Science Foundation of Chi-na(No.U19A2015,No.22102167)+2 种基金CAS Project for Young Scientists in Basic Research(YSBR-051)Wenhua Zhang is supported by USTC Tang Scholarship and State Scholarship Fund(202206345005)The calculations were performed at the Super-computing Center of University of Science and Technology of China(USTCSCC).
文摘The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.
基金The project supported by National Natural Science Foundation of China under Grant No. 60578050
文摘We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED. It is Shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not, our teleportation scheme can always be probabilistically realized. The success prohability of teleportation is determined by the smaller coemcients of the two initially entangled atom pairs.
基金The project supported by Natural Science Foundation of Fujian Province of China under Grant No. JB05065
文摘A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.
基金Supported by the Science Foundation of Educational Committee of Fujian Province under Grant No.JB09011
文摘A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atomicspontaneous emission is suppressed.The scheme is simple.It does not need to adjust the interaction time accurately,anddoes not need to prepare the cavity field in one-photon state.Numerical simulation shows that the successful probabilityof the scheme increases with the increasing of the atom number.
基金Supported by the Natural Science Foundation of Fujian Province under Grant (No.2008J0217)
文摘Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupling constants between atoms,the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed.The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms,the atomic initial states and the photon number of transition.The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is β11〉.When the initial state of two atoms is β01〉,the entanglement of two atoms displays periodic oscillation behavior.And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.On the other hand,when the initial state is β00〉 or β10〉,the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61076094,11072218,and 11272287Zhejiang Provincial Natural Science Foundation of China under Grant No. Y6110314Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y200909693
文摘In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state with a single-photon emitted have to be far smaller than 1 to obtain an acceptable entangled state.Based on strong dipole-dipole interaction between two Rydberg atoms,two simultaneous excitations in an atomic ensemble are greatly suppressed,which makes it possible to excite a mesoscopic cold atomic ensemble into a near-ideal singly-excited symmetric collective state accompanied by a signal-photon with near unity success probability.