基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳...基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳定模型.对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算.根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能.根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热.且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.展开更多
文摘基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳定模型.对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算.根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能.根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热.且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.
基金supported by the National Key Research and Development Program(No.2018YFA0208600,No.2019YFA0210004)the National Natural Science Foundation of China(U19A2015)+2 种基金CAS Project for Young Scientists in Basic Research(YSBR-051)Innovation Program for Quantum Science and Technology(2021ZD0303306)supported by USTC Tang Scholarship。
基金financially supported by National Natural Science Foundation of China(No.52130101)the National Key R&D Program of China(Grant No.2023YFB3003001)+1 种基金the fund of‘World-class Universities and World-class Disciplines’,Ministry of Education,China‘Xiaomi Young Scholar’Project。