Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method an...Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.展开更多
This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper ...This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,展开更多
The C++ program: Hapseeker was developed to analyze DNA or RNA sequence, besides, Hapseeker could be used to identify haplotype, calculate frequency of each haplotype as well as find variable site quickly. Moreover, H...The C++ program: Hapseeker was developed to analyze DNA or RNA sequence, besides, Hapseeker could be used to identify haplotype, calculate frequency of each haplotype as well as find variable site quickly. Moreover, Hapseeker had many advantages such as simple operation, rapid running speed and high accuracy.展开更多
AIM To develop a fast, low-cost diagnostic strategy to identify single point mutations in highly variable genomes such as hepatitis C virus(HCV).METHODS In patients with HCV infection, resistance-associated amino acid...AIM To develop a fast, low-cost diagnostic strategy to identify single point mutations in highly variable genomes such as hepatitis C virus(HCV).METHODS In patients with HCV infection, resistance-associated amino acid substitutions within the viral quasispecies prior to therapy can confer decreased susceptibility to direct-acting antiviral agents and lead to treatment failure and virological relapse. One such naturally occurring mutation is the Q80 K substitution in the HCV-NS3 protease gene, which confers resistance to PI inhibitors, particularly simeprevir. Low-cost, highly sensitive techniques enabling routine detection of these single point mutations would be useful to identify patients at a risk of treatment failure. Light Cycler methods, based on real-time PCR with sequencespecific probe hybridization, have been implemented in most diagnostic laboratories. However, this technique cannot identify single point mutations in highly variable genetic environments, such as the HCV genome. To circumvent this problem, we developed a new method to homogenize all nucleotides present in a region except the point mutation of interest. RESULTS Using nucleotide-specific probes Q, K, and R substitutions at position 80 were clearly identified at a sensitivity of 10%(mutations present at a frequency of at least 10% were detected). The technique was successfully applied to identify the Q80 K substitution in 240 HCV G1 serum samples, with performance comparable to that of direct Sanger sequencing, the current standard procedure for this purpose. The new method was then validated in a Catalonian population of 202 HCV G1-infected individuals. Q80 K was detected in 14.6% of G1 a patients and 0% of G1 b in our setting. CONCLUSION A fast, low-cost diagnostic strategy based on real-time PCR and fluorescence resonance energy transfer probe melting curve analysis has been successfully developed to identify single point mutations in highly variable genomes such as hepatitis C virus. This technique can be adapted to detect any single point mutation in highly variable genomes.展开更多
Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work t...Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented.展开更多
Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approx...Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load.展开更多
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu...The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.展开更多
基金supported partially by the National Natural Science Foundation of China(No.40974004 and 40974016)the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG,China(No.2011A01)the Key Laboratory of Advanced Surveying Engineering of NASMG,China(No.TJES1101)
文摘Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.
文摘This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,
基金Supported by the Pilot Project of the Knowledge Innovation Program(0654221211)~~
文摘The C++ program: Hapseeker was developed to analyze DNA or RNA sequence, besides, Hapseeker could be used to identify haplotype, calculate frequency of each haplotype as well as find variable site quickly. Moreover, Hapseeker had many advantages such as simple operation, rapid running speed and high accuracy.
基金Supported by Instituto de Salud Carlos III,No.PI13/00456,No.PI15/00829,No.PI15/00856,and No.PI12/01893 cofinanced by the European Regional Development Fund(ERDF)the Miguel Servet program of the Instituto de Salud Carlos III,No.CP14/00121 cofinanced by the ERDF+1 种基金Gilead,No.GLD14/00296Instituto de Salud Carlos III,CIBERehd(Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas)
文摘AIM To develop a fast, low-cost diagnostic strategy to identify single point mutations in highly variable genomes such as hepatitis C virus(HCV).METHODS In patients with HCV infection, resistance-associated amino acid substitutions within the viral quasispecies prior to therapy can confer decreased susceptibility to direct-acting antiviral agents and lead to treatment failure and virological relapse. One such naturally occurring mutation is the Q80 K substitution in the HCV-NS3 protease gene, which confers resistance to PI inhibitors, particularly simeprevir. Low-cost, highly sensitive techniques enabling routine detection of these single point mutations would be useful to identify patients at a risk of treatment failure. Light Cycler methods, based on real-time PCR with sequencespecific probe hybridization, have been implemented in most diagnostic laboratories. However, this technique cannot identify single point mutations in highly variable genetic environments, such as the HCV genome. To circumvent this problem, we developed a new method to homogenize all nucleotides present in a region except the point mutation of interest. RESULTS Using nucleotide-specific probes Q, K, and R substitutions at position 80 were clearly identified at a sensitivity of 10%(mutations present at a frequency of at least 10% were detected). The technique was successfully applied to identify the Q80 K substitution in 240 HCV G1 serum samples, with performance comparable to that of direct Sanger sequencing, the current standard procedure for this purpose. The new method was then validated in a Catalonian population of 202 HCV G1-infected individuals. Q80 K was detected in 14.6% of G1 a patients and 0% of G1 b in our setting. CONCLUSION A fast, low-cost diagnostic strategy based on real-time PCR and fluorescence resonance energy transfer probe melting curve analysis has been successfully developed to identify single point mutations in highly variable genomes such as hepatitis C virus. This technique can be adapted to detect any single point mutation in highly variable genomes.
文摘Mehrotra's recent suggestion of a predictor corrector variant of primal dual interior point method for linear programming is currently the interior point method of choice for linear programming. In this work the authors give a predictor corrector interior point algorithm for monotone variational inequality problems. The algorithm was proved to be equivalent to a level 1 perturbed composite Newton method. Computations in the algorithm do not require the initial iteration to be feasible. Numerical results of experiments are presented.
基金Project (No. 1027054) supported by the National Natural Science Foundation of China
文摘Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load.
基金Project(51175122)supported by the National Natural Science Foundation of China
文摘The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.