期刊文献+
共找到847篇文章
< 1 2 43 >
每页显示 20 50 100
基于MA-CNN-LSTM和自注意力机制的单变量短期电力负荷预测
1
作者 周磊 竺筱晶 《科学技术与工程》 北大核心 2024年第22期9408-9416,共9页
精准的短期电力负荷预测对保证电网安全稳定运行、能量优化管理、提高发电设备利用率和降低运行成本等具有重要作用。针对单变量场景下地区短期电力负荷预测问题,提出了一种基于多重滑动平均(moving average,MA)和卷积网络-长短期记忆网... 精准的短期电力负荷预测对保证电网安全稳定运行、能量优化管理、提高发电设备利用率和降低运行成本等具有重要作用。针对单变量场景下地区短期电力负荷预测问题,提出了一种基于多重滑动平均(moving average,MA)和卷积网络-长短期记忆网络(convolutional networks long short-term memory networks,CNN-LSTM)混合模型,并添加自注意力(Self-Attention)机制的预测方法。首先利用多重滑动平均将原始负荷数据分解为多个平稳序列,以降低数据的噪声和复杂度。接着将各一维序列数据变换为多维结构,使用CNN提取多个时间点之间的内在关系。再输入LSTM模型中训练,并使用自注意力机制进行加权融合以提高预测精度。最后把各序列预测值相加得到最终负荷预测值。为了验证该方法的有效性,在中国某地区电网间隔15 min的真实负荷数据上进行了预测实验,并将预测结果与其他常见的模型预测结果进行对比。通过实验结果表明,在单变量短期电力负荷预测问题中该方法的准确性比其他方法更高。 展开更多
关键词 单变量短期电力负荷预测 滑动平均 卷积网络 短期记忆网络 自注意力
下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:2
2
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 短期负荷 负荷预测 二次分解 双向门控循环
下载PDF
基于Attention-LSTM的短期电力负荷预测
3
作者 李璨 伍黎艳 +4 位作者 赵威 李晟 曾加贝 苏旨音 曾进辉 《船电技术》 2025年第1期5-8,共4页
电力负荷预测的准确性受到多种因素的干扰,如气候变化、经济发展以及区域差异等,这些因素使得电力负荷呈现出显著的不稳定性和复杂的非线性特征,从而增加了提高预测精度的难度。为了应对这一挑战,本文创新性地引入了一种结合自注意力机... 电力负荷预测的准确性受到多种因素的干扰,如气候变化、经济发展以及区域差异等,这些因素使得电力负荷呈现出显著的不稳定性和复杂的非线性特征,从而增加了提高预测精度的难度。为了应对这一挑战,本文创新性地引入了一种结合自注意力机制与长短期记忆网络(LSTM)的预测方法。通过在美国某一地区的实际用电负荷数据验证模型,实验结果表明,该方法的决定系数(R2)为0.96,平均绝对误差(MAE)为0.023,均方根误差(RMSE)为0.029,提升了预测的准确性。这不仅证明了所提模型在提高电力负荷预测精度方面的有效性,也为其在船舶电力负荷预测的应用奠定了一定的基础。 展开更多
关键词 短期电力负荷预测 短期记忆网络 自注意力机制 预测精度 模型泛化能力
下载PDF
基于CNN-SAEDN-Res的短期电力负荷预测方法 被引量:5
4
作者 崔杨 朱晗 +2 位作者 王议坚 张璐 李扬 《电力自动化设备》 EI CSCD 北大核心 2024年第4期164-170,共7页
基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘... 基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘数据间的局部相关性,获取高维特征。初始负荷预测模块由自注意力编码解码网络和前馈神经网络构成,利用自注意力机制对高维特征进行自注意力编码,获取数据间的全局相关性,从而模型能根据数据间的耦合关系保留混有非时序因素数据中的重要信息,通过解码模块进行自注意力解码,并利用前馈神经网络回归初始负荷。引入残差机制构建负荷优化模块,生成负荷残差,优化初始负荷。算例结果表明,所提方法在预测精度和预测稳定性方面具有优势。 展开更多
关键词 短期电力负荷预测 卷积神经网络 自注意力机制 残差机制 负荷优化
下载PDF
基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型 被引量:3
5
作者 王凌云 周翔 +2 位作者 田恬 杨波 李世春 《电力自动化设备》 EI CSCD 北大核心 2024年第2期190-197,共8页
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分... 为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。 展开更多
关键词 短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
下载PDF
一种时频尺度下的多元短期电力负荷组合预测方法 被引量:1
6
作者 李楠 姜涛 +1 位作者 隋想 胡禹先 《电力系统保护与控制》 EI CSCD 北大核心 2024年第13期47-58,共12页
随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mo... 随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)在时频域上将负荷数据分解为若干个频率特征不同的本征模态分量,在模糊熵准则下聚类为随机项和趋势项。采用皮尔逊系数从诸多影响因素中筛选出与电力负荷高度相关的特征,鉴于小时间尺度分析更易于挖掘局部细节特征,分别构建了随机项与趋势项的细颗粒度特征集。利用具有强非线性处理能力的时间卷积网络(temporal convolutional network,TCN)去预测随机项,利用结构简单及线性拟合效果好的多元线性回归(multiplelinearregression,MLR)去预测趋势项,将二者的预测结果进行叠加重构后获得最终预测值。在新加坡和比利时两组数据集上的实验结果证明:所提模型具有较高的预测精度、较好的泛化性能及鲁棒性。 展开更多
关键词 短期电力负荷预测 时频尺度 分解算法 模糊熵 模型融合
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:4
7
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
基于极限学习机的短期电力负荷在线预测
8
作者 杨凌 彭文英 +2 位作者 杨思怡 杜娟 程丽 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期637-644,共8页
为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输... 为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输出权值的稀疏正则化项相结合,用l1-范数稀疏化网络隐藏层节点,用次梯度策略解决求解过程中代价函数无法处处可微的问题,以递归最小二乘的训练方法完成在线学习,根据估计误差自适应寻找最优正则化参数.仿真结果表明,基于SRLS-ELM的算法能有效简化网络结构,且与ELM、堆叠核ELM批量、在线序列ELM半在线以及精确在线支持向量机回归模型相比,对短期电力负荷在线预测时具有更高的预测精度和学习效率,且鲁棒性强. 展开更多
关键词 短期电力负荷预测 极限学习机 在线学习 正则化
下载PDF
基于IGWO-Attention-GRU的短期电力负荷预测模型
9
作者 徐利美 贺卫华 +2 位作者 李远 朱燕芳 续欣莹 《信息技术》 2024年第12期101-108,共8页
为了提高短期电力负荷的预测精度,针对电力负荷序列波动性强、复杂性高的特点,综合考虑气象因素及日期类型的影响,文中提出一种基于改进灰狼优化算法(IGWO)优化Attention-GRU网络的短期电力负荷预测模型。首先,构建Attention-GRU网络;其... 为了提高短期电力负荷的预测精度,针对电力负荷序列波动性强、复杂性高的特点,综合考虑气象因素及日期类型的影响,文中提出一种基于改进灰狼优化算法(IGWO)优化Attention-GRU网络的短期电力负荷预测模型。首先,构建Attention-GRU网络;其次,对灰狼优化算法(GWO)进行改进,并利用IGWO寻找Attention-GRU网络的超参数;最后,使用IGWO-Attention-GRU模型在电力负荷数据集上进行实验,并与多种预测模型进行比较。实验结果表明,IGWO-Attention-GRU模型的MAPE、RMSE和MAE值均为各种预测模型中最低,验证了IGWO-Attention-GRU模型的优越性。 展开更多
关键词 短期电力负荷预测 GRU网络 Attention机制 改进灰狼优化算法 超参数寻优
下载PDF
基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测
10
作者 曾进辉 苏旨音 +2 位作者 肖锋 刘颉 孙贤水 《电子测量技术》 北大核心 2024年第20期92-100,共9页
针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM... 针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM中。为进一步提升负荷预测精度和优化模型泛化能力,分别对大分量信号引入改进麻雀搜寻算法优化LSTM超参数和对原始负荷数据引入表格生成对抗网络生成新数据样本,形成基于表格生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测方法。最后,分别采用第九届电工数学建模竞赛负荷数据和湖南省某地市含分布式电源的负荷数据进行效果验证。结果表明,在两种数据集下,该模型的平均绝对百分比误差分别为2.37%和2.76%,验证了该方法的有效性。 展开更多
关键词 短期电力负荷预测 经验模态分解 短期记忆神经网络 改进麻雀搜寻算法 生成对抗网络
下载PDF
基于CEEMDAN-SBiGRU-OMHA的短期电力负荷预测
11
作者 包广斌 刘晨 +2 位作者 张波 沈治名 罗曈 《计算机系统应用》 2024年第10期124-132,共9页
为了提高短期电力负荷预测的精准度,充分挖掘电力负荷数据的复杂相关性,提出了一种优化多头注意力机制的CEEMDAN-SBiGRU组合预测模型,改进了特征提取和特征融合两个模块.首先,采用自适应噪声完全集成经验模态分解(complete ensemble emp... 为了提高短期电力负荷预测的精准度,充分挖掘电力负荷数据的复杂相关性,提出了一种优化多头注意力机制的CEEMDAN-SBiGRU组合预测模型,改进了特征提取和特征融合两个模块.首先,采用自适应噪声完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将电力负荷数据分解成多个内在模态函数(IMF)和一个残差信号(RES);同时引入降噪自编码器DAE挖掘数据中受气象因素、工作日类型和温度变化的潜在特征.其次,将提取到的复杂特征输入至堆叠双向门控循环单元(stacked bidirectional gated recurrent unit,SBiGRU)模块中继续学习,以获取隐藏状态.最后,将获取的隐藏状态输入至加入残差机制和层归一化优化的多头注意力(optimized multi-head attention,OMHA)机制模块,可以准确地给重要特征分配更高的权重,解决噪声干扰问题.实验结果表明,CEEMDAN-SBiGRU-OMHA组合模型具有更高的精确性. 展开更多
关键词 短期电力负荷预测 自适应噪声完全集成经验模态分解(CEEMDAN) 堆叠双向门控循环元(SBiGRU) 降噪自编码器 优化的多头注意力(OMHA)
下载PDF
基于牛顿-拉弗森优化算法与注意力机制优化TCN−GRU的短期电力负荷预测
12
作者 于惠钧 夏梦 +2 位作者 陈刚 谭福元 徐银凤 《湖南电力》 2024年第6期120-127,共8页
为了提升短期电力负荷预测的准确率和效率,将时间卷积网络(temporal convolutional network,TCN)、门控循环单元(gated recurrent unit,GRU)模型、牛顿-拉弗森优化算法(Newton-Raphson-based optimizer,NRBO)和注意力机制(at⁃tention me... 为了提升短期电力负荷预测的准确率和效率,将时间卷积网络(temporal convolutional network,TCN)、门控循环单元(gated recurrent unit,GRU)模型、牛顿-拉弗森优化算法(Newton-Raphson-based optimizer,NRBO)和注意力机制(at⁃tention mechanism,Attention)结合,提出一种NRBO-TCN-GRU-Attention的负荷预测模型。在该模型中,利用NRBO算法来优化超参数,TCN模块从负荷数据中提取特征,并将提取到的特征输入GRU模块中捕获在负荷序列中的长期依赖关系。接着,利用注意力机制强化重要特征。最后通过全连接层输出预测结果。试验结果表明,所提模型在两天及一周测试集上的决定系数、平均绝对误差、平均绝对百分比误差、均方根误差四项指标均优于其他对比模型,验证了所提模型的优越性和适用性。 展开更多
关键词 短期电力负荷预测 时间卷积网络 门控循环 牛顿-拉弗森优化算法 注意力机制
下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
13
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(MLP) 时间卷积网络(TCN) 短期记忆(LSTM)网络
下载PDF
基于变量选择与Transformer模型的中长期电力负荷预测方法 被引量:1
14
作者 黄文琦 梁凌宇 +3 位作者 王鑫 赵翔宇 宗珂 孙凌云 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第4期483-491,500,共10页
准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件... 准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件,根据变量与预测结果的相关性,赋予变量不同的权重。设计了双层编码结构,进行时序特征提取,对注意力进行稀疏处理,通过多变量输入对未来时刻负荷进行预测。基于真实电力负荷数据的实验表明,本文模型能够提高中长期负荷预测精度和效率。 展开更多
关键词 电力时序数据 TRANSFORMER 中长期负荷预测 变量 变量选择
下载PDF
基于MSA-LSTM的短期电力负荷预测模型
15
作者 冯勇 张校铭 《辽宁大学学报(自然科学版)》 2024年第4期360-367,共8页
短期电力负荷预测是对未来较短时间内的电力负荷进行预测的过程.当前短期电力负荷预测存在不确定性强、负荷变化快、计算成本高等问题.针对以上问题,本文通过融合多头自注意力(Multi-head self-attention,MSA)机制与长短期记忆(Long sho... 短期电力负荷预测是对未来较短时间内的电力负荷进行预测的过程.当前短期电力负荷预测存在不确定性强、负荷变化快、计算成本高等问题.针对以上问题,本文通过融合多头自注意力(Multi-head self-attention,MSA)机制与长短期记忆(Long short-term memory,LSTM)网络,提出了一种新型的MSA-LSTM模型用以进行短期电力负荷预测.该模型旨在处理电力负荷数据的时间依赖性和复杂性,增加MSA结构作为LSTM网络结构的输入模块,增强LSTM网络的长期记忆能力和对关键时间序列特征的捕捉能力.对目标数据集的实验验证表明MSA-LSTM模型在预测精度和稳定性方面均优于传统LSTM模型和双向长短期记忆(Bidirectional long short-term memory,BiLSTM)模型.利用第九届电工杯电力负荷数据和气象数据的数据集对本文所提出的模型进行十折交叉验证,相比LSTM模型和BiLSTM模型,MSA-LSTM模型的平均均方误差(mean square error,MSE)分别减少4.285%和2.672%,误差的标准差分别减少6.575%和3.406%.研究结果表明,该模型在电力系统负荷预测中具有较高的应用价值,对优化电力系统运营和决策支持具有重要意义. 展开更多
关键词 短期电力负荷预测 多头自注意力机制 LSTM
下载PDF
基于变分模态分解和复合变量选取的短期负荷预测 被引量:3
16
作者 周纲 黄瑞 +3 位作者 刘谋海 李文博 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第2期122-129,共8页
精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,... 精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,提出复合变量选取算法分析筛选影响负荷波动的关键因素,有效去除预测干扰信息并进一步简化预测模型的复杂度,通过兼顾数据短期依赖和长期依赖的长短时记忆神经网络对各子序列进行预测,并将各子序列预测结果进行叠加实现最终的短期负荷预测,据此建立基于变分模态分解和复合变量选取的短期负荷预测方法。选取2019年整年长沙市实际数据验证结果表明,提出算法在复杂外部影响因素下,能准确筛选负荷预测的关键影响因素,相比传统预测模型,提出模型结构更简单、预测精度更高。 展开更多
关键词 短期负荷预测 变分模态分解 复合变量选取算法 长短时记忆神经网络
下载PDF
电力短期负荷的多变量时间序列线性回归预测方法研究 被引量:94
17
作者 雷绍兰 孙才新 +1 位作者 周湶 张晓星 《中国电机工程学报》 EI CSCD 北大核心 2006年第2期25-29,共5页
根据单变量时间序列的相空间重构思想,提出了一种电力短期负荷的多变量时间序列相空间重构方案,同时针对每一分量时间序列采用互信息法进行最佳延迟时间的选择,最优嵌入维数则采用最小预测误差法进行确定。根据相点间的欧氏距离和关联度... 根据单变量时间序列的相空间重构思想,提出了一种电力短期负荷的多变量时间序列相空间重构方案,同时针对每一分量时间序列采用互信息法进行最佳延迟时间的选择,最优嵌入维数则采用最小预测误差法进行确定。根据相点间的欧氏距离和关联度,提出了最近邻域点的优化选择方法,建立了多变量时间序列的一阶局域线性预测模型。通过重庆某地区电力系统短期负荷预测的计算实例表明,基于多变量时间序列的负荷预测方法与单变量负荷预测方法相比,具有较强的自适应能力和较好的预测效果。 展开更多
关键词 电力系统 短期负荷预测 混沌时间序列 变量时间序列 一阶局域线性法 关联度 相空间重构
下载PDF
基于改进Autoformer模型的短期电力负荷预测 被引量:1
18
作者 范杏蕊 李元诚 《电力自动化设备》 EI CSCD 北大核心 2024年第4期171-177,共7页
针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的... 针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的内在复杂时序趋势,使得模型具有复杂时间序列的渐进分解能力;提出Nystrom自注意力机制,该机制利用Nystrom方法来逼近标准的自注意力机制。某地电力负荷预测实验结果表明,所提模型比基于标准Autoformer模型的短期电力负荷预测模型的时间复杂度更低,准确率更高。 展开更多
关键词 短期电力负荷预测 时序分解模块 Nystrom自注意力机制 Sdformer模型
下载PDF
电力短期负荷的多变量混沌预测方法 被引量:9
19
作者 雷绍兰 孙才新 +2 位作者 周湶 邓群 刘凡 《高电压技术》 EI CAS CSCD 北大核心 2005年第12期69-72,共4页
为提高电力短期负荷预测精度和充分利用混沌短期预测优势,拓展单变量时间序列相空间重构到多变量时间序列中,相空间重构了由历史负荷及其相关因素序列所构成的多变量时间序列,计算了多变量时间序列的嵌入维数和延迟时间并用RBF神经网络... 为提高电力短期负荷预测精度和充分利用混沌短期预测优势,拓展单变量时间序列相空间重构到多变量时间序列中,相空间重构了由历史负荷及其相关因素序列所构成的多变量时间序列,计算了多变量时间序列的嵌入维数和延迟时间并用RBF神经网络预测负荷。研究表明多变量重构相空间技术的预测效果优于单变量重构。 展开更多
关键词 短期负荷预测 混沌 变量时间序列 径向基函数神经网络
下载PDF
基于PLESN和LESQRN概率预测模型的短期电力负荷预测 被引量:1
20
作者 樊江川 于昊正 +2 位作者 王冬生 安佳坤 杨丽君 《燕山大学学报》 北大核心 2024年第1期54-61,共8页
针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕... 针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕捉负荷的多重特征定义了周期性和趋势性损失函数辅助优化点预测模型然后为克服残差的波动问题利用概率预测模型对点预测值与真实值的残差进行建模预测最后整合同时刻的点预测值与残差预测区间得到概率预测模型结果.实际算例结果表明与其他模型相比所提模型不仅有效抑制尖端振荡现象而且能够生成可靠的概率密度分布. 展开更多
关键词 短期电力负荷预测 周期性建模 泄露积分型回声状态网络 分位数回归
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部