Let TΩ be the singular integral operator with kernel Ω(x)/|x|n where is homogeneous of degree zero, integrable and has mean value zero on the unit sphere Sn-1. In this paper, by Fourier transform estimates, L...Let TΩ be the singular integral operator with kernel Ω(x)/|x|n where is homogeneous of degree zero, integrable and has mean value zero on the unit sphere Sn-1. In this paper, by Fourier transform estimates, Littlewood-Paley theory and approximation, the authors prove that if Ω∈(lnL)2 (Sn- 1), then the commutator generated by TΩ and CMO(Rn) function, and the corresponding discrete maximal operator, are compact on LP(Rn, |s|γp) for p∈ (1, ∞) and γp ∈ (-1, p-l)展开更多
基金supported by National Natural Science Foundation of China(Grant No.11371370)
文摘Let TΩ be the singular integral operator with kernel Ω(x)/|x|n where is homogeneous of degree zero, integrable and has mean value zero on the unit sphere Sn-1. In this paper, by Fourier transform estimates, Littlewood-Paley theory and approximation, the authors prove that if Ω∈(lnL)2 (Sn- 1), then the commutator generated by TΩ and CMO(Rn) function, and the corresponding discrete maximal operator, are compact on LP(Rn, |s|γp) for p∈ (1, ∞) and γp ∈ (-1, p-l)