Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unres...Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unresolved. To describe the seismic wave propagation in media with lateral velocity variations and to image high-angle structures, we propose the generalized screen propagator based on particle swarm optimization (PSO-GSP), for the precise fitting of the single-square-root operator. We use the 2D SEG/EAGE salt model to test the proposed PSO-GSP migration method to image the faults beneath the salt dome and compare the results to those of the conventional high-order generalized screen propagator (GSP) migration and split-step Fourier (SSF) migration. Moreover, we use 2D marine data from the South China Sea to show that the PSO-GSP migration can better image strong reflectors than conventional imaging methods.展开更多
An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. Fr...An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.展开更多
A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two ...A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.展开更多
The single ion channel signal is an ionic current that can be recorded by the patch clamp technique. Hidden Markov model (HMM) algorithm has been used to convert the low signal noise ratio (SNR) noisy recording into a...The single ion channel signal is an ionic current that can be recorded by the patch clamp technique. Hidden Markov model (HMM) algorithm has been used to convert the low signal noise ratio (SNR) noisy recording into an idealized quantal one in the case of white background noise. The traditional HMM algorithm is extended and adapted to the colored background noise. A new algorithm called EHMM (Extended HMM) algorithm is proposed, and mainly validated by simulation. Results show that it’s effective.展开更多
We have studied the quantum and classical motions of a single Paul trapped ion interacting with a timeperiodic laser field. By using the test-function method, we construct n exact solutions of quantum dynamics that de...We have studied the quantum and classical motions of a single Paul trapped ion interacting with a timeperiodic laser field. By using the test-function method, we construct n exact solutions of quantum dynamics that describe the generalized squeezed coherent states with the expectation orbits being the corresponding classical ones. The spacetime evolutions of the exact probability densities show some wavepacket trains. It is demonstrated analytically that by adjusting the laser intensity and frequency, we can control the center motions of the wavepacket trains. We also discuss the other physical properties such as the expectation value of energy, the widths and heights of the wavepackets, and the resonance loss of stability.展开更多
A two-stage monolithic low noise amplifier is developed for satellite communication applications,using a 0.5μm enhancement PHEMT technology. The on-chip matched amplifier employs lumped elements to reduce the circuit...A two-stage monolithic low noise amplifier is developed for satellite communication applications,using a 0.5μm enhancement PHEMT technology. The on-chip matched amplifier employs lumped elements to reduce the circuit size, and shows a 5012 noise figure less than 0.9dB, gain greater than 26dB, and return loss less than - 10dB in the S-C band range of 3.5 to 4. 3GHz. The noise figure obtained here is the best result ever reported to date of an MMIC LNA with a gain of more than 20dB for the S-C band frequency range. It is attributed to the low noise performance of the enhancement PHEMT transistor and minimized parasitic resistance of the input match network by a common series source inductor and a unique divided resistance at the drain.展开更多
We study the scattering process of photons confined in a one-dimensional optical waveguide by a laser controlled atomic ensemble. The investigation leads to an alternative setup of quantum node controlling the coheren...We study the scattering process of photons confined in a one-dimensional optical waveguide by a laser controlled atomic ensemble. The investigation leads to an alternative setup of quantum node controlling the coherent transfer of single photon in such one dimensional continuum. To exactly solve the effective scattering equations by using the discrete coordinate approach, we simulate the linear waveguide as a coupled resonator array at the high energy limit. We generally calculate the transmission eoet^cients and its vanishing at resonance reflects the good controllability of our scheme. We also show that there exist two bound states to describe the localize photons around the cavity.展开更多
A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,bi...A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,biasing,and DC block circuitry included on the chip.Thepower amplifier has an average power gain of 19dB over 6~18GHz.At operation frequenciesfrom 6 to 18GHz,the output power is above 33.3dBm,and the maximum output power of the MMICis 34.7dBm at 10Ghz.The input return loss is less than-10db and the out-put return is lessthan-6dB over operating frequency.This power amplifier has,to our knowledge,the best powergain flatness reported at C-X-Ku-band applications.展开更多
An alternative scheme is proposed for one-step generation of multiparticle cluster state with trapped ionsin thermal motion.In this scheme,the ions are simultaneously illuminated by a standing-wave laser tuned to the ...An alternative scheme is proposed for one-step generation of multiparticle cluster state with trapped ionsin thermal motion.In this scheme,the ions are simultaneously illuminated by a standing-wave laser tuned to the carrier.During the operations,the vibrational mode is virtually excited,thus the quantum operations are insensitive to theheating.It is shown that the high fidelity multiparticle entanglement could be generated in just one step even includingthe small fluctuations of parameters.In addition,the ion does not need to be exactly positioned at the node of thestanding wave,which is also important from the viewpoint of experiment.展开更多
Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- y...Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- ysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and I-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objec- tive and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.展开更多
Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian λ on a compact Riemannian manifold M with boundary such that A eλ = λ2eλ in the interior of M and the normal derivative of ex vanishes...Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian λ on a compact Riemannian manifold M with boundary such that A eλ = λ2eλ in the interior of M and the normal derivative of ex vanishes on the boundary of M. Let xλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate展开更多
With the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultraweak signal dete...With the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultraweak signal detection capability and the extremely low timing jitter properties of single-photon detectors, the combination of single-photon detection and classical microwave photonics technology may provide a solution to break the above bottlenecks. In this paper, we first report a novel concept of singlephoton microwave photonics(SP-MWP), a SP-MWP signal processing system with phase shifting and frequency filtering functionalities is demonstrated based on a superconducting nanowire single photon detector(SNSPD) and a successive time-correlated single photon counting(TCSPC) module.Experimental results show that an ultrahigh optical sensitivity down to-100 d Bm has been achieved,and the signal processing bandwidth is only limited by the timing jitter of single-photon detectors. In the meantime, the proposed system demonstrates an ultrahigh anti-interference capability, only the signal which is phase locked by the trigger signal in TCSPC can be extracted from the detected signals combining with noise and strong interference. The proposed SP-MWP concept paves a way to a novel interdisciplinary field of microwave photonics and quantum mechanism, named by quantum microwave photonics.展开更多
Ultrafast quasiparticle dynamics of single crystalline LaOFeAs were investigated by pump-probe measurement.The compound experiences structural and spin-density-wave(SDW)phase transitions at 150 K(TS1)and 130 K(TS2),re...Ultrafast quasiparticle dynamics of single crystalline LaOFeAs were investigated by pump-probe measurement.The compound experiences structural and spin-density-wave(SDW)phase transitions at 150 K(TS1)and 130 K(TS2),respectively.The relaxation time of quasiparticles was somewhat temperature independent at high temperature but exhibited a sharp upturn at TS1and reached the maximum at approximately TS2.The remarkable slowing down of quasiparticle relaxation time is caused by the formation of energy gap.By employing the Rothwarf-Taylor model analysis,we found that there should be already energy gaps opening just below the structural transition.The magnitude of SDW gap was identified to be 72 meV.展开更多
A novel biopolymer, deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-HCTAC), is used as the core layer material in optical waveguide, and the cleanroom technology is successfully applied to fabricate the...A novel biopolymer, deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-HCTAC), is used as the core layer material in optical waveguide, and the cleanroom technology is successfully applied to fabricate the single-mode channel waveguides with low propagation loss. The prepared DNA-HCTAC material shows high optical quality at the optical telecommunication wavelengths, such as high transparency, relatively high refractive index and low birefringence. In the fabrication approach, polymethyl methacrylate (PMMA) is used as a barrier layer to protect the DNA-HCTAC material from the corrosive of photoresist developer, and the etching conditions are optimized to form the smooth wall and sharp cross-section of the waveguide. Lastly, the optical characteristics of DNA-HCTAC channel waveguides are measured. The results show that the DNA-HCTAC waveguide operates with single-mode propagation and has a low optical loss.展开更多
The double wave theory (DWT), sometimes called the“non_statistical quantum mechanics” by its proposer, describes the state of each single particle in an ensemble with two wave functions which have a parameter corres...The double wave theory (DWT), sometimes called the“non_statistical quantum mechanics” by its proposer, describes the state of each single particle in an ensemble with two wave functions which have a parameter corresponding to the particle. However the basic postulates of the DWT show that this theory can hardly describe any quantum rules of the microscopic world. In the double wave descriptions, the wave feature of the behavior of microscopic particles and the discontinuity characteristic of energy almost disappear. The discussions on several problems of the radiation atoms made by the DWT's proposer on the basis of this theory are either mathematically incorrect or inconsistent with experiments and the usual theory.展开更多
基金supported by the 863 Program of China(No.2013AA064201)National Science and Technology Major Project(No.2016ZX05003-003)
文摘Various migration methods have been proposed to image high-angle geological structures and media with strong lateral velocity variations; however, the problems of low precision and high computational cost remain unresolved. To describe the seismic wave propagation in media with lateral velocity variations and to image high-angle structures, we propose the generalized screen propagator based on particle swarm optimization (PSO-GSP), for the precise fitting of the single-square-root operator. We use the 2D SEG/EAGE salt model to test the proposed PSO-GSP migration method to image the faults beneath the salt dome and compare the results to those of the conventional high-order generalized screen propagator (GSP) migration and split-step Fourier (SSF) migration. Moreover, we use 2D marine data from the South China Sea to show that the PSO-GSP migration can better image strong reflectors than conventional imaging methods.
基金sponsored by the National Natural Science Foundation of China (Nos. 40774069 and 40974074)the State Key Program of National Natural Science of China (No. 40830424)the National 973program (No. 007209603)
文摘An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.
文摘A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.
文摘The single ion channel signal is an ionic current that can be recorded by the patch clamp technique. Hidden Markov model (HMM) algorithm has been used to convert the low signal noise ratio (SNR) noisy recording into an idealized quantal one in the case of white background noise. The traditional HMM algorithm is extended and adapted to the colored background noise. A new algorithm called EHMM (Extended HMM) algorithm is proposed, and mainly validated by simulation. Results show that it’s effective.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575034 and 10275023, and the Laboratory of Magnetic Resonance and Atomic and Molccular Physics of China under Grant No. T152504
文摘We have studied the quantum and classical motions of a single Paul trapped ion interacting with a timeperiodic laser field. By using the test-function method, we construct n exact solutions of quantum dynamics that describe the generalized squeezed coherent states with the expectation orbits being the corresponding classical ones. The spacetime evolutions of the exact probability densities show some wavepacket trains. It is demonstrated analytically that by adjusting the laser intensity and frequency, we can control the center motions of the wavepacket trains. We also discuss the other physical properties such as the expectation value of energy, the widths and heights of the wavepackets, and the resonance loss of stability.
文摘A two-stage monolithic low noise amplifier is developed for satellite communication applications,using a 0.5μm enhancement PHEMT technology. The on-chip matched amplifier employs lumped elements to reduce the circuit size, and shows a 5012 noise figure less than 0.9dB, gain greater than 26dB, and return loss less than - 10dB in the S-C band range of 3.5 to 4. 3GHz. The noise figure obtained here is the best result ever reported to date of an MMIC LNA with a gain of more than 20dB for the S-C band frequency range. It is attributed to the low noise performance of the enhancement PHEMT transistor and minimized parasitic resistance of the input match network by a common series source inductor and a unique divided resistance at the drain.
基金Supported by the Natural Science Foundation of China under Grant Nos.10775048,10704023,10775048,and 10325523the National Fundamental Research Program of China under Grant No.2007CB925204the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.07C579
文摘We study the scattering process of photons confined in a one-dimensional optical waveguide by a laser controlled atomic ensemble. The investigation leads to an alternative setup of quantum node controlling the coherent transfer of single photon in such one dimensional continuum. To exactly solve the effective scattering equations by using the discrete coordinate approach, we simulate the linear waveguide as a coupled resonator array at the high energy limit. We generally calculate the transmission eoet^cients and its vanishing at resonance reflects the good controllability of our scheme. We also show that there exist two bound states to describe the localize photons around the cavity.
文摘A three-stage MMIC power amplifier operating from 6to 18GHz is fabricated using 0.25μm A1GaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT).The amplifier isfully monolithic,with all matching,biasing,and DC block circuitry included on the chip.Thepower amplifier has an average power gain of 19dB over 6~18GHz.At operation frequenciesfrom 6 to 18GHz,the output power is above 33.3dBm,and the maximum output power of the MMICis 34.7dBm at 10Ghz.The input return loss is less than-10db and the out-put return is lessthan-6dB over operating frequency.This power amplifier has,to our knowledge,the best powergain flatness reported at C-X-Ku-band applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10704017, 11074036National Fundamental Research Program of China under Grant No. 2007CB936300
文摘An alternative scheme is proposed for one-step generation of multiparticle cluster state with trapped ionsin thermal motion.In this scheme,the ions are simultaneously illuminated by a standing-wave laser tuned to the carrier.During the operations,the vibrational mode is virtually excited,thus the quantum operations are insensitive to theheating.It is shown that the high fidelity multiparticle entanglement could be generated in just one step even includingthe small fluctuations of parameters.In addition,the ion does not need to be exactly positioned at the node of thestanding wave,which is also important from the viewpoint of experiment.
文摘Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- ysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and I-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objec- tive and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.
基金supported by the National Natural Science Foundation of China(Nos.10971104,11271343,11101387)the Anhui Provincial Natural Science Foundation(No.1208085MA01)the Fundamental Research Funds for the Central Universities(Nos.WK0010000020,WK0010000023,WK3470000003)
文摘Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian λ on a compact Riemannian manifold M with boundary such that A eλ = λ2eλ in the interior of M and the normal derivative of ex vanishes on the boundary of M. Let xλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate
基金supported by the National Key Research and Development Program of China (2018YFB2201902, 2018YFB2201901, and 2018YFB2201903)partly supported by the National Natural Science Foundation of China (61925505, 61535012, 61705217, 12033007, 61875205, 61801458, and 91836301)+1 种基金Frontier Science Key Research Project of CAS (QYZDB-SSW-SLH007)Strategic Priority Research Program of CAS (XDC07020200)
文摘With the rapid development of microwave photonics technology, high-speed processing and ultra-weak signal detection capability have become the main bottlenecks in many applications. Thanks to the ultraweak signal detection capability and the extremely low timing jitter properties of single-photon detectors, the combination of single-photon detection and classical microwave photonics technology may provide a solution to break the above bottlenecks. In this paper, we first report a novel concept of singlephoton microwave photonics(SP-MWP), a SP-MWP signal processing system with phase shifting and frequency filtering functionalities is demonstrated based on a superconducting nanowire single photon detector(SNSPD) and a successive time-correlated single photon counting(TCSPC) module.Experimental results show that an ultrahigh optical sensitivity down to-100 d Bm has been achieved,and the signal processing bandwidth is only limited by the timing jitter of single-photon detectors. In the meantime, the proposed system demonstrates an ultrahigh anti-interference capability, only the signal which is phase locked by the trigger signal in TCSPC can be extracted from the detected signals combining with noise and strong interference. The proposed SP-MWP concept paves a way to a novel interdisciplinary field of microwave photonics and quantum mechanism, named by quantum microwave photonics.
基金supported by the National Science Foundation of China(Grant No.2011CB921701)the National Basic Research Program of China(Grant No.2012CB821403)
文摘Ultrafast quasiparticle dynamics of single crystalline LaOFeAs were investigated by pump-probe measurement.The compound experiences structural and spin-density-wave(SDW)phase transitions at 150 K(TS1)and 130 K(TS2),respectively.The relaxation time of quasiparticles was somewhat temperature independent at high temperature but exhibited a sharp upturn at TS1and reached the maximum at approximately TS2.The remarkable slowing down of quasiparticle relaxation time is caused by the formation of energy gap.By employing the Rothwarf-Taylor model analysis,we found that there should be already energy gaps opening just below the structural transition.The magnitude of SDW gap was identified to be 72 meV.
基金supported by the International Collaboration Project of Ningbo (No.2010D10018)the Research and Innovation Project of Zhejiang Province (No.2011R405050)the Research Fund of Graduate of Ningbo University (No.G11JA001)
文摘A novel biopolymer, deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-HCTAC), is used as the core layer material in optical waveguide, and the cleanroom technology is successfully applied to fabricate the single-mode channel waveguides with low propagation loss. The prepared DNA-HCTAC material shows high optical quality at the optical telecommunication wavelengths, such as high transparency, relatively high refractive index and low birefringence. In the fabrication approach, polymethyl methacrylate (PMMA) is used as a barrier layer to protect the DNA-HCTAC material from the corrosive of photoresist developer, and the etching conditions are optimized to form the smooth wall and sharp cross-section of the waveguide. Lastly, the optical characteristics of DNA-HCTAC channel waveguides are measured. The results show that the DNA-HCTAC waveguide operates with single-mode propagation and has a low optical loss.
文摘The double wave theory (DWT), sometimes called the“non_statistical quantum mechanics” by its proposer, describes the state of each single particle in an ensemble with two wave functions which have a parameter corresponding to the particle. However the basic postulates of the DWT show that this theory can hardly describe any quantum rules of the microscopic world. In the double wave descriptions, the wave feature of the behavior of microscopic particles and the discontinuity characteristic of energy almost disappear. The discussions on several problems of the radiation atoms made by the DWT's proposer on the basis of this theory are either mathematically incorrect or inconsistent with experiments and the usual theory.