Low pore sedimentary rocks(from Guangxi, China) were subjected to uniaxial compression loading experiment under different initial stresses. The rock samples were investigated by nuclear magnetic resonance before and a...Low pore sedimentary rocks(from Guangxi, China) were subjected to uniaxial compression loading experiment under different initial stresses. The rock samples were investigated by nuclear magnetic resonance before and after the loading. The relationships between the mesoscopic rock damage and macroscopic mechanical parameters were established, and the initial damage stress of the low-porosity sedimentary rock was determined. The results showed that this type of rock has the initial stress of damage. When the initial loading stress is lower than the initial stress of damage, the T2 spectrum area of the rock sample gradually decreases, and the primary pores of the rock are further closed under the stress. The range of the initial stress of damage for this type of rock is 8-16 MPa. When the loading stress exceeds the initial stress of damage, the T2 spectrum area gradually increases, indicating that the porosity of the rock increases and microscopic damage of the rock appears. The rock damage degree is defined, and the nonlinear function between the rock damage degree and the initial loading stress is established.展开更多
For the abnormal ice condition in 2009-2010 winter, sea ice samples were collected in a tide ditch outside a port in the east coast of Liaodong Bay, and ice specimens were prepared. Experimental study was carried out ...For the abnormal ice condition in 2009-2010 winter, sea ice samples were collected in a tide ditch outside a port in the east coast of Liaodong Bay, and ice specimens were prepared. Experimental study was carried out with a temperature-control precision of 0.1℃, and 117 columnar-grained ice specimens were loaded along the direction parallel to ice surface under different test temperatures (-4, -7, -10, -13, -16℃) and strain rates ranging from 10^-6 to 10^-2 s^-1 within which the ductile region, duetile-brittle transition and brittle region are contained. The uniaxial compressive strengths, density and salinity of the ice specmens were measured. The results support the curved-surface relationship between the uniaxial compressive strength and porosity within a wide range of strain rate. The curved-surface relationship gives a quantitative description about the variations of the mechanical behavior transition point with ice porosity, and supplies a uniform mathematical representation of uniaxial compressive strength under different failure modes. Besides, it is deduced that abnormal ice condition in 2009-2010 winter will not result in a change of the uniaxial compressive strength of sea ice in Bohai Sea.展开更多
基金Project(41672298)supported by the National Natural Science Foundation of China。
文摘Low pore sedimentary rocks(from Guangxi, China) were subjected to uniaxial compression loading experiment under different initial stresses. The rock samples were investigated by nuclear magnetic resonance before and after the loading. The relationships between the mesoscopic rock damage and macroscopic mechanical parameters were established, and the initial damage stress of the low-porosity sedimentary rock was determined. The results showed that this type of rock has the initial stress of damage. When the initial loading stress is lower than the initial stress of damage, the T2 spectrum area of the rock sample gradually decreases, and the primary pores of the rock are further closed under the stress. The range of the initial stress of damage for this type of rock is 8-16 MPa. When the loading stress exceeds the initial stress of damage, the T2 spectrum area gradually increases, indicating that the porosity of the rock increases and microscopic damage of the rock appears. The rock damage degree is defined, and the nonlinear function between the rock damage degree and the initial loading stress is established.
基金supported by the National Natural Science Foundation of China(Grant Nos.50921001,50879008)State Key Laboratory of Fro-zen Soil Engineering(Grant No.SKLFSE200904)+1 种基金Vilho,Yrj and Kalle Visl Fund of the Finnish Academy of Sciences and Lettersthe Norwegian Research Council Project AMORA(Grant No.193592/S30)
文摘For the abnormal ice condition in 2009-2010 winter, sea ice samples were collected in a tide ditch outside a port in the east coast of Liaodong Bay, and ice specimens were prepared. Experimental study was carried out with a temperature-control precision of 0.1℃, and 117 columnar-grained ice specimens were loaded along the direction parallel to ice surface under different test temperatures (-4, -7, -10, -13, -16℃) and strain rates ranging from 10^-6 to 10^-2 s^-1 within which the ductile region, duetile-brittle transition and brittle region are contained. The uniaxial compressive strengths, density and salinity of the ice specmens were measured. The results support the curved-surface relationship between the uniaxial compressive strength and porosity within a wide range of strain rate. The curved-surface relationship gives a quantitative description about the variations of the mechanical behavior transition point with ice porosity, and supplies a uniform mathematical representation of uniaxial compressive strength under different failure modes. Besides, it is deduced that abnormal ice condition in 2009-2010 winter will not result in a change of the uniaxial compressive strength of sea ice in Bohai Sea.