期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Transformer网络的中文单字词检错方法研究
被引量:
5
1
作者
曹阳
曹存根
王石
《中文信息学报》
CSCD
北大核心
2021年第1期135-142,共8页
错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提...
错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分利用汉字混淆集和Web网页构建中文单字词错误训练语料库。其次,在实际测试过程中,该文对实际的待识别语句采用滑动窗口方法,对每个滑动窗口中的句子片段分别进行单字词检错,并且综合考虑不同窗口的识别结果。实验表明,该方法具有较好的实用性。在自动生成的测试集上,识别准确率和召回率分别达到83.6%和65.7%;在真实测试集上,识别准确率和召回率分别达到82.8%和61.4%。
展开更多
关键词
单字词检错
Transformer网络
滑动窗口
下载PDF
职称材料
题名
基于Transformer网络的中文单字词检错方法研究
被引量:
5
1
作者
曹阳
曹存根
王石
机构
中国科学院计算技术研究所智能信息处理重点实验室
中国科学院大学
出处
《中文信息学报》
CSCD
北大核心
2021年第1期135-142,共8页
基金
国家重点研发计划(2017YFC1700300,2017YFB1002300)。
文摘
错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分利用汉字混淆集和Web网页构建中文单字词错误训练语料库。其次,在实际测试过程中,该文对实际的待识别语句采用滑动窗口方法,对每个滑动窗口中的句子片段分别进行单字词检错,并且综合考虑不同窗口的识别结果。实验表明,该方法具有较好的实用性。在自动生成的测试集上,识别准确率和召回率分别达到83.6%和65.7%;在真实测试集上,识别准确率和召回率分别达到82.8%和61.4%。
关键词
单字词检错
Transformer网络
滑动窗口
Keywords
single word error detection
Transformer network
sliding window
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Transformer网络的中文单字词检错方法研究
曹阳
曹存根
王石
《中文信息学报》
CSCD
北大核心
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部