This paper presents an object oriented Petri net (OOPN) schema to model the dynamic behaviors of a flexible manufacturing cells (FMCs). The OOPN paradigm incorporates the characteristics of a Petri net and OOP. It in...This paper presents an object oriented Petri net (OOPN) schema to model the dynamic behaviors of a flexible manufacturing cells (FMCs). The OOPN paradigm incorporates the characteristics of a Petri net and OOP. It increases the maintainability and reusability of objects in Petri net modeling, thus it has more powerful modeling and analysis abilities.展开更多
This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the st...This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.展开更多
Human visual sense has two aspects in our feeling for blurred image, that is, one is the amount of blur depending on object size, the other is the amount of blur independent of the object size. In the former for examp...Human visual sense has two aspects in our feeling for blurred image, that is, one is the amount of blur depending on object size, the other is the amount of blur independent of the object size. In the former for example, when the image size becomes larger, the author feels smaller amount blur. The quantitative evaluation based on entropy for blurred images is proposed in this paper. The author calls this metric "variation entropy". This metric has two kinds of aspects that coincide with the human visual sense. The first is the absolute evaluation of blur, and the second is the relative evaluation of blur. The former can be quantified by variation entropy for a unit boundary length (or L-type variation entropy: HL ), which is dependent on resolution, and the latter can be quantified by variation entropy for a unit area (or A-type variation entropy: H^A ), which is independent of resolution. These two metrics have complementary properties. At last, two variation entropies are applied to the standard kanji character database, and then the strong relation between variation entropy and accuracy of recognition is discussed. The tendency of writing skills for grades is evaluated by applying the metric to a database collected from school children.展开更多
文摘This paper presents an object oriented Petri net (OOPN) schema to model the dynamic behaviors of a flexible manufacturing cells (FMCs). The OOPN paradigm incorporates the characteristics of a Petri net and OOP. It increases the maintainability and reusability of objects in Petri net modeling, thus it has more powerful modeling and analysis abilities.
文摘This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.
文摘Human visual sense has two aspects in our feeling for blurred image, that is, one is the amount of blur depending on object size, the other is the amount of blur independent of the object size. In the former for example, when the image size becomes larger, the author feels smaller amount blur. The quantitative evaluation based on entropy for blurred images is proposed in this paper. The author calls this metric "variation entropy". This metric has two kinds of aspects that coincide with the human visual sense. The first is the absolute evaluation of blur, and the second is the relative evaluation of blur. The former can be quantified by variation entropy for a unit boundary length (or L-type variation entropy: HL ), which is dependent on resolution, and the latter can be quantified by variation entropy for a unit area (or A-type variation entropy: H^A ), which is independent of resolution. These two metrics have complementary properties. At last, two variation entropies are applied to the standard kanji character database, and then the strong relation between variation entropy and accuracy of recognition is discussed. The tendency of writing skills for grades is evaluated by applying the metric to a database collected from school children.