Eight chiral vinylterphenyl monomers, (+)-2,5-bis{4'-[(S)-1"-methylpropyloxy]phenyl}styrene (Ia), (+)-2,5-bis{4'-[(S)-2"- methylbutyloxy]phenyl}styrene (Ib), (+)-2,5-bis{4'-[(S)-3"-methylpenty...Eight chiral vinylterphenyl monomers, (+)-2,5-bis{4'-[(S)-1"-methylpropyloxy]phenyl}styrene (Ia), (+)-2,5-bis{4'-[(S)-2"- methylbutyloxy]phenyl}styrene (Ib), (+)-2,5-bis{4'-[(S)-3"-methylpentyloxy]phenyl}styrene (Ic), (+)-2,5-bis{4'-[(S)-4"- methylhexyloxy]phenyl}styrene (Id), (-)-2,5-bis{4'-[(R)-1"-methylpropyloxy]phenyl}styrene (le), (+)-2-/4'-[(S)-l"-methyl- propyloxy]phenyl}-5-{4'-[(R)-1"-methylpropyloxy]phenyl}styrene (Ⅱa), (-)-2-{4'-[(R)-1"-methylpropyloxy]phenyl}-5-{4'- [(S)- 1 "-methylpropyloxy]phenyl } styrene (lib), and (+)-2- { 4'-[(S)-2"-methylbutyloxy]phenyl }-5- { 4'-[(S)- 1"-methylpropyl- oxy]phenyl}styrene (Ⅲ), were synthesized and radically polymerized. These molecules were designed to further understand long-range chirality transfer in radical polymerization and to possibly tune the chiroptical properties of the polymers by varying the spatial configuration, position, and various combination of the stereogenic centers at the ends ofp-terphenyl pendants. The resultant polymers adopted helical conformations with a predominant screw sense. When the stereogenic centers ran away from the terphenyl group as in Ⅰb-d, the corresponding polymers changed the direction of optical rotation in an alternative way and showed no obvious stereomutation upon annealing in tetrahydrofuran. The two stereogenic centers of Ⅱa, Ⅱb, and Ⅲ acted concertedly in chiral induction, whereas those of la and Ie played a counteractive role. The five polymers derived from Ⅰa, Ⅰe, Ⅱa, Ⅱb, and Ⅲ underwent stereomutation when annealed in tetrahydrofuran. The polymers PIa-e had good thermal stability and high glass transition temperatures (Tgs). They generated liquid crystalline phases at above Tgs that could be kept upon cooling, with the exception of Pie. This result was consistent with the extended helical structures.展开更多
Two chiral supramolecular porous solids derived from novel cluster-based structures of [Mn^Ⅲ_4Mn^Ⅱ] and [Mn_7^Ⅲ Mn_3^Ⅱ ] were synthesized. Driven by the distinct pores and host-guest interactions, they exhibited ...Two chiral supramolecular porous solids derived from novel cluster-based structures of [Mn^Ⅲ_4Mn^Ⅱ] and [Mn_7^Ⅲ Mn_3^Ⅱ ] were synthesized. Driven by the distinct pores and host-guest interactions, they exhibited either selective gas adsorption ability for the former or the ability of enan- tioselective separation via reversible single-crystal-to-sin- gle-crystal transformation for the latter.展开更多
Single-walled carbon nanotubes(SWNTs)are regarded as one of the most promising candidates as building blocks in the next generation electronics.The most advanced opportunities demand the ability to form perfectly al...Single-walled carbon nanotubes(SWNTs)are regarded as one of the most promising candidates as building blocks in the next generation electronics.The most advanced opportunities demand the ability to form perfectly aligned,horizontal arrays of SWNTs with a uniform structure.However,synthesizing them by conventional chemical vapor deposition(CVD)methods would result in poorly-aligned nanotubes with a variety of chiral species,展开更多
The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory...The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.展开更多
基金supported by the National Natural Science Foundation of China(21274003)the Research Fund for Doctoral Program of Higher Education of Ministry of Education(20110001110084)
文摘Eight chiral vinylterphenyl monomers, (+)-2,5-bis{4'-[(S)-1"-methylpropyloxy]phenyl}styrene (Ia), (+)-2,5-bis{4'-[(S)-2"- methylbutyloxy]phenyl}styrene (Ib), (+)-2,5-bis{4'-[(S)-3"-methylpentyloxy]phenyl}styrene (Ic), (+)-2,5-bis{4'-[(S)-4"- methylhexyloxy]phenyl}styrene (Id), (-)-2,5-bis{4'-[(R)-1"-methylpropyloxy]phenyl}styrene (le), (+)-2-/4'-[(S)-l"-methyl- propyloxy]phenyl}-5-{4'-[(R)-1"-methylpropyloxy]phenyl}styrene (Ⅱa), (-)-2-{4'-[(R)-1"-methylpropyloxy]phenyl}-5-{4'- [(S)- 1 "-methylpropyloxy]phenyl } styrene (lib), and (+)-2- { 4'-[(S)-2"-methylbutyloxy]phenyl }-5- { 4'-[(S)- 1"-methylpropyl- oxy]phenyl}styrene (Ⅲ), were synthesized and radically polymerized. These molecules were designed to further understand long-range chirality transfer in radical polymerization and to possibly tune the chiroptical properties of the polymers by varying the spatial configuration, position, and various combination of the stereogenic centers at the ends ofp-terphenyl pendants. The resultant polymers adopted helical conformations with a predominant screw sense. When the stereogenic centers ran away from the terphenyl group as in Ⅰb-d, the corresponding polymers changed the direction of optical rotation in an alternative way and showed no obvious stereomutation upon annealing in tetrahydrofuran. The two stereogenic centers of Ⅱa, Ⅱb, and Ⅲ acted concertedly in chiral induction, whereas those of la and Ie played a counteractive role. The five polymers derived from Ⅰa, Ⅰe, Ⅱa, Ⅱb, and Ⅲ underwent stereomutation when annealed in tetrahydrofuran. The polymers PIa-e had good thermal stability and high glass transition temperatures (Tgs). They generated liquid crystalline phases at above Tgs that could be kept upon cooling, with the exception of Pie. This result was consistent with the extended helical structures.
基金supported by the National Natural Science Foundation of China(91122032,21121061,90922009,and 50872157)the National Basic Research Program of China(2012CB821704)
文摘Two chiral supramolecular porous solids derived from novel cluster-based structures of [Mn^Ⅲ_4Mn^Ⅱ] and [Mn_7^Ⅲ Mn_3^Ⅱ ] were synthesized. Driven by the distinct pores and host-guest interactions, they exhibited either selective gas adsorption ability for the former or the ability of enan- tioselective separation via reversible single-crystal-to-sin- gle-crystal transformation for the latter.
文摘Single-walled carbon nanotubes(SWNTs)are regarded as one of the most promising candidates as building blocks in the next generation electronics.The most advanced opportunities demand the ability to form perfectly aligned,horizontal arrays of SWNTs with a uniform structure.However,synthesizing them by conventional chemical vapor deposition(CVD)methods would result in poorly-aligned nanotubes with a variety of chiral species,
基金supported by the State Key Development for Basic Research of China(Grant No.2010CB631002) the National Natural Science Foundation of China(Grant Nos.51071098,11104175 and 11214216)
文摘The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.