期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
陶瓷材料的电子能谱分析
1
作者 Watts,JF 姚映钦 《国外建材科技》 1992年第1期58-68,共11页
关键词 陶瓷 电子能谱分析 单晶矿
下载PDF
Electronic structure and flotation behavior of monoclinic and hexagonal pyrrhotite 被引量:7
2
作者 赵翠华 吴伯增 陈建华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期466-471,共6页
Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe... Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite. 展开更多
关键词 monoclinic pyrrhotite hexagonal pyrrhotite electronic structure flotation behavior density functional theory
下载PDF
Sum Frequency Generation Vibrational Spectra of Perovskite Nanocrystals at the Single-Nanocrystal and Ensemble Levels
3
作者 Renlong Zhu Quanbing Pei +2 位作者 Junjun Tan Xiaoxuan Zheng Shuji Ye 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第5期738-746,I0001-I0003,I0011,共13页
Determination of molecular structures of organicinorganic hybrid perovskite(OIHP)nanocrystals at the single-nanocrystal and ensemble levels is essential to understanding the mechanisms responsible for their size-depen... Determination of molecular structures of organicinorganic hybrid perovskite(OIHP)nanocrystals at the single-nanocrystal and ensemble levels is essential to understanding the mechanisms responsible for their size-dependent optoelectronic properties and the nanocrystal assembling process,but its detection is still a bit challenging.In this study,we demonstrate that femtosecond sum frequency generation(SFG)vibrational spectroscopy can provide a highly sensitive tool for probing the molecular structures of nanocrystals with a size comparable to the Bohr diameter(∼10 nm)at the single-nanocrystal level.The SFG signals are monitored using the spectral features of the phenyl group in(RMBA)PbBr_(3) and(R-MBA)_(2)PbI_(4) nanocrystals(MBA:methyl-benzyl-ammonium).It is found that the SFG spectra exhibit a strong resonant peak at 3067±3 cm^(−1)(ν2 mode)and a weak shoulder peak at 3045±4 cm^(−1)(ν_(7a) mode)at the ensemble level,whereas a peak of theν2 mode and a peak at 3025±3 cm^(−1)(ν20b mode)at the single-nanocrystal level.The nanocrystals at the single-nanocrystal level tend to lie down on the surface,but stand up as the ensemble number and the averaged sizes increase.This finding may provide valuable information on the structural origins for size-dependent photo-physical properties and photoluminescence blinking dynamics in nanocrystals. 展开更多
关键词 PEROVSKITE Single nanocrystal Sum frequency generation vibrational spectroscopy Size-dependent property
下载PDF
120 mm Single-crystalline perovskite and wafers: towards viable applications 被引量:10
4
作者 Yucheng Liu Xiaodong Ren +13 位作者 Jing Zhang Zhou Yang Dong Yang Fengyang Yu Jiankun Sun Changming Zhao Zhun Yao Bo Wang Qingbo Wei Fengwei Xiao Haibo Fan Hao Deng Liangping Deng Shengzhong (Frank) Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第10期1367-1376,共10页
As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafe... As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, light emitting diodes(LEDs), etc. Here we report a method to grow large single-crystalline perovskites including single-halide crystals: CH3NH3PbX3(X=I, Br, Cl), and dual-halide ones:CH3NH3Pb(ClxBr1.x)3 and CH3NH3Pb(BrxI1.x)3, with the largest crystal being 120 mm in length. Meanwhile, we have advanced a process to slice the large perovskite crystals into thin wafers. It is found that the wafers exhibit remarkable features:(1)its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films(MPTF);(2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT;(3) its optical absorption is expanded to as high as910 nm comparing to 797 nm for the MPTF;(4) while MPTF decomposes at 150 °C, the wafer is stable at high temperature up to270 °C;(5) when exposed to high humidity(75% RH), MPTF decomposes in 5 h while the wafer shows no change for overnight;(6) its photocurrent response is 250 times higher than its MPTF counterpart. A few electronic devices have been fabricated using the crystalline wafers. Among them, the Hall test gives low carrier concentration with high mobility. The trap-state density is measured much lower than common semiconductors. Moreover, the large SC-wafer is found particularly useful for mass production of integrated circuits. By adjusting the halide composition, both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm. It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites. With fewer trap states, high mobility, broader absorption, and humidity resistance, it is expected that solar cells with high stable efficiency maybe attainable using the crystalline wafers. 展开更多
关键词 single-crystal growth perovskite wafer IC devices photodetector array
原文传递
Progress in organic-inorganic hybrid halide perovskite single crystal:growth techniques and applications 被引量:3
5
作者 丁洁 严清峰 《Science China Materials》 SCIE EI CSCD 2017年第11期1063-1078,共16页
As a new generation of solution-processable optoelectronic materials, organic-inorganic hybrid halide perovskites have attracted a great deal of interest due to their high and balanced carrier mobility, long carrier d... As a new generation of solution-processable optoelectronic materials, organic-inorganic hybrid halide perovskites have attracted a great deal of interest due to their high and balanced carrier mobility, long carrier dif- fusion length and large light absorption coefficient. These materials have demonstrated wide applications in solar cell, light-emitting diode, laser, photodetector, catalysis and other fields. Comparing with their polycrystalline film counter- part, perovskite single crystals have low trap density and no grain boundaries and thus are anticipated to possess much better optoelectronic performances. Herein, we review the key progress in the development of organic-inorganic halide perovskite single crystals. Particularly, the crystal growth techniques and applications of these advanced materials are highlighted. 展开更多
关键词 organic-inorganic hybrid halide PEROVSKITE SINGLECRYSTAL
原文传递
Epitaxial growth of horizontally aligned single-crystal arrays of perovskite 被引量:2
6
作者 Yitan Li Yuguang Chen +4 位作者 Lu Han Xuemei Li Jian Sheng Hao Sun Yan Li 《Science China Materials》 SCIE EI CSCD 2019年第1期59-64,共6页
Well-aligned single-crystal nanowire arrays of CH3NH3PbIs have shown potentials in laser sources and photovoltaic applications.Here we developed a solution based epitaxial method to grow CH3NH3PbI3nanowire arrays.By c... Well-aligned single-crystal nanowire arrays of CH3NH3PbIs have shown potentials in laser sources and photovoltaic applications.Here we developed a solution based epitaxial method to grow CH3NH3PbI3nanowire arrays.By confining the precursor solution between a silicon wafer and ST-cut quartz,the evaporation rate of the solvent was slowed down which brings a more stable and controllable solution environment.Relying on the lattice match between CH3NH3PbI3 and ST-cut quartz,arrays of single-crystal nanowires of CH3NH3PbI3have been grown epitaxially.The densities and lengths of CH3NH3PbI3 nanowires can be tuned. The lengths of the resultant crystals range from several microns to over one millimeter.Such CH3NH3PbI3arrays with good alignment and crystallinity were then applied to fabricate photovoltaic devices with good performances. 展开更多
关键词 CH3NH3PbI3 single crystal ARRAYS epitaxial growth tunable lengths
原文传递
Diffusion-correlated local photoluminescence kinetics in CH_3NH_3PbI_3 perovskite single-crystalline particles 被引量:1
7
作者 赵春一 田文明 +3 位作者 冷静 崔荣荣 刘维峰 金盛烨 《Science Bulletin》 SCIE EI CAS CSCD 2016年第9期665-669,共5页
Understanding the correlation between the life- time, mobility and diffusion length of photoinduced charge carriers in organolead halide perovskite is essential to suc- cessful perovskite-based solar cells. In this pa... Understanding the correlation between the life- time, mobility and diffusion length of photoinduced charge carriers in organolead halide perovskite is essential to suc- cessful perovskite-based solar cells. In this paper, through mapping the local photoluminescence (PL) dynamics using laser/PL-scanned confocal imaging microscopy and simu- lating the carrier diffusion process in an individual CH3NH3PbI3 single-crystalline particle, we report that the rapid diffusion of charge carriers can produce a fast local PL kinetics when the perovskite is partially excited. This result indicates that using PL kinetics to estimate the carrier life- time in perovskite single crystals needs to exclude the effect of carrier diffusion. 展开更多
关键词 Organolead halide perovskites Carrierdiffusion Photoluminescence kinetics
原文传递
Centimeter-scale perovskite SrTaO2N single crystals with enhanced photoelectrochemical performance
8
作者 Xiaoming Xu Wenjing Wang +6 位作者 Yuanming Zhang Yong Chen Huiting Huang Tao Fang Yang Li Zhaosheng Li Zhigang Zou 《Science Bulletin》 SCIE EI CAS CSCD 2022年第14期1458-1466,M0004,共10页
Large-scale single crystals have potential applications in many fields,such as in ferroelectric and photoelectric energy conversion devices.Perovskite oxynitrides have also attracted attention in photoelectrochemical ... Large-scale single crystals have potential applications in many fields,such as in ferroelectric and photoelectric energy conversion devices.Perovskite oxynitrides have also attracted attention in photoelectrochemical water splitting systems because of their high theoretical solar-to-hydrogen efficiencies.Nevertheless,the synthesis of perovskite oxynitride single crystals requires the coupling of cation exchange and ammonization processes,which is exceptionally challenging.The present study demonstrates an inorganic vapor method that provides,for the first time ever,high-quality epitaxial perovskite SrTaO_(2)N single crystals on the centimeter scale.Assessments using Raman spectroscopy,crystal structure analysis and density functional theory determined that the conversion mechanism followed a topotactic transition mode.Compared with conventional SrTaO_(2)N particle-assembled films,the SrTaO_(2)N single crystals made in this work were free of interparticle interfaces and grain boundaries,which exhibited extremely high performance during photoelectrochemical water oxidation.In particular,these SrTaO_(2)N single crystals showed the highest photocurrent density at 0.6 V vs.RHE(1.20 mA cm^(−2)) and the highest photocurrent filling factor(47.6%)reported to date,together with a low onset potential(0.35 V vs.RHE).This onset potential was 200 mV less than that of the reported in situ SrTaO_(2)N film,and the photocurrent fill factor was improved by 2 to 3 times. 展开更多
关键词 Perovskite oxynitride Single crystal PHOTOELECTROCHEMISTRY
原文传递
High quality large single crystals of metal halide perovskites for optoelectronic applications
9
作者 Eugene A.Katz 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第10期1326-1327,共2页
As the technological development of large single-crystalline wafers have revolutionized many industries including electronics and photovoltaics,one can predict that the availability of large single-crystalline perovsk... As the technological development of large single-crystalline wafers have revolutionized many industries including electronics and photovoltaics,one can predict that the availability of large single-crystalline perovskite crystals and wafers can revolutionize its broad applications in photodetectors,solar cells,LEDs,lasers,etc.In 2015,Liu et al. 展开更多
关键词 crystalline halide perovskite technological electronics inverse optoelectronic wafer availability render
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部