The silicon nano-crystalline (nc-Si) film is fabricated on <100> orientation,0.01Ω·cm resistivity,and p-type boron-doped silicon wafer by the anodic etching.The microstructure and the orientation of nc-Si ...The silicon nano-crystalline (nc-Si) film is fabricated on <100> orientation,0.01Ω·cm resistivity,and p-type boron-doped silicon wafer by the anodic etching.The microstructure and the orientation of nc-Si are examined by the scanning electron microscopy,transmission electron microscopy,and X-ray diffraction spectroscopy,respectively.The average size of particle is estimated by Raman spectroscopy.The results show that the particle size of nc-Si film is scattered from 10nm to 20nm,the alignment is compact,the orientation is uniform,the expansion of lattice constant is negligible,and mechanical robustness and stability are good.The correlations between film structure and the experiment parameters such as etching time,HF concentration,and etching current density are discussed.As a potential application,efficient field emission is observed from the nc-Si film,and the turn-on field is about 3V/μm at 0.1μA/cm 2 of current density,which is close to carbon nanotube film's.展开更多
Three-dimensional molecular dynamics simulations are carried out to study the mechanism of nanometric processing of ion implanted monocrystalline silicon surfaces. Lattice transformation is observed during implantatio...Three-dimensional molecular dynamics simulations are carried out to study the mechanism of nanometric processing of ion implanted monocrystalline silicon surfaces. Lattice transformation is observed during implantation and nano-indentation using radial distribution function and geometric criterion damage detection. Nano-indentation is simulated to study the changes of mechanical property. Implantation analysis shows the existence of amorphous phase. Indentation process shows the lattice evolution, which is beneficial for reducing fractures during processing. The indentation results reveal the reduction of brittleness and hardness of the implanted surface. The ion fluence is in direct proportion to the damage, and inverse to the hardness of the material. Experiments of ion implar, tation, nanoindentation, nano-scratching and nanometric cutting were carried out to verify the simulation results.展开更多
A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deform...A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deformation fields of the crack-tip area.The normal strain field maps of the crack-tip area indeed showed the deformation occurs primarily in the vicinity of the dislocations and the normal strains are near zero in the crack-tip area.The shear strain field map shows that the relatively large shear strain is in the crack-tip area.The experimental results were compared with the predictions of linear elastic fracture mechanics.The comparison shows that measured strain distribution ahead of the crack-tip agrees with the predictions of linear elastic fracture mechanics up to 1 nm from the crack-tip.展开更多
文摘The silicon nano-crystalline (nc-Si) film is fabricated on <100> orientation,0.01Ω·cm resistivity,and p-type boron-doped silicon wafer by the anodic etching.The microstructure and the orientation of nc-Si are examined by the scanning electron microscopy,transmission electron microscopy,and X-ray diffraction spectroscopy,respectively.The average size of particle is estimated by Raman spectroscopy.The results show that the particle size of nc-Si film is scattered from 10nm to 20nm,the alignment is compact,the orientation is uniform,the expansion of lattice constant is negligible,and mechanical robustness and stability are good.The correlations between film structure and the experiment parameters such as etching time,HF concentration,and etching current density are discussed.As a potential application,efficient field emission is observed from the nc-Si film,and the turn-on field is about 3V/μm at 0.1μA/cm 2 of current density,which is close to carbon nanotube film's.
基金Supported by the National Basic Research Program of China("973" Program,No.2011CB706703)
文摘Three-dimensional molecular dynamics simulations are carried out to study the mechanism of nanometric processing of ion implanted monocrystalline silicon surfaces. Lattice transformation is observed during implantation and nano-indentation using radial distribution function and geometric criterion damage detection. Nano-indentation is simulated to study the changes of mechanical property. Implantation analysis shows the existence of amorphous phase. Indentation process shows the lattice evolution, which is beneficial for reducing fractures during processing. The indentation results reveal the reduction of brittleness and hardness of the implanted surface. The ion fluence is in direct proportion to the damage, and inverse to the hardness of the material. Experiments of ion implar, tation, nanoindentation, nano-scratching and nanometric cutting were carried out to verify the simulation results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10862002 and 11062008)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0909)the Natural Science Foundation of Inner Mongolia (Grant No. 2010BS0106)
文摘A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deformation fields of the crack-tip area.The normal strain field maps of the crack-tip area indeed showed the deformation occurs primarily in the vicinity of the dislocations and the normal strains are near zero in the crack-tip area.The shear strain field map shows that the relatively large shear strain is in the crack-tip area.The experimental results were compared with the predictions of linear elastic fracture mechanics.The comparison shows that measured strain distribution ahead of the crack-tip agrees with the predictions of linear elastic fracture mechanics up to 1 nm from the crack-tip.