In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based o...In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.展开更多
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica...Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.展开更多
The interaction of a single two-level two-mode trapped ion with a laser beam has been studied theoretically. With application of a unitary transformation, an analytical solution to this quantum system has been obtaine...The interaction of a single two-level two-mode trapped ion with a laser beam has been studied theoretically. With application of a unitary transformation, an analytical solution to this quantum system has been obtained without performing the Lamb-Dicke approximation. In this system the entangled displacement Fock state is produced.展开更多
基金National Science and Technology Major Project of China(No.2016ZX04003001)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCZDJC39700)
文摘In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.
基金Project(51475479) supported by the National Natural Science Foundation of ChinaProject(2017YFB1104800) supported by the National Key Research and Development Program of China+2 种基金Project(2016GK2098) supported by the Key Research and Development Program of Hunan Province,ChinaProject(ZZYJKT2017-07) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(JMTZ201804) supported by the Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.
基金The project supported by the Natural Science Foundation of the Education Committee of Anhui Province of China under Grant No.2004kj186
文摘The interaction of a single two-level two-mode trapped ion with a laser beam has been studied theoretically. With application of a unitary transformation, an analytical solution to this quantum system has been obtained without performing the Lamb-Dicke approximation. In this system the entangled displacement Fock state is produced.