The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribu...The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.展开更多
Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-...Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.展开更多
A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) sin...A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2.4 × 10 ^-3 ,and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43%, 8.5 × 10^-3 , and 200kHz at 238K.展开更多
Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The d...Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.展开更多
In this paper, we present a stable single-photon detection method based on Si-avalanche photodiode(Si-APD) operating in Geiger mode with a large temperature variation range. By accurate temperature sensing and direct ...In this paper, we present a stable single-photon detection method based on Si-avalanche photodiode(Si-APD) operating in Geiger mode with a large temperature variation range. By accurate temperature sensing and direct current(DC) bias voltage compensation, the single-photon detector can work stably in Geiger mode from-40 °C to 35 °C with an almost constant avalanche gain. It provides a solution for single-photon detection at outdoor operation in all-weather conditions.展开更多
In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state ...In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state with a single-photon emitted have to be far smaller than 1 to obtain an acceptable entangled state.Based on strong dipole-dipole interaction between two Rydberg atoms,two simultaneous excitations in an atomic ensemble are greatly suppressed,which makes it possible to excite a mesoscopic cold atomic ensemble into a near-ideal singly-excited symmetric collective state accompanied by a signal-photon with near unity success probability.展开更多
基金Supported by Shanghai Natural Science Foundation(22ZR1472600).
文摘The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.
基金ACKNOWLEDGMENTS This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No.10904085).
文摘Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.
文摘A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2.4 × 10 ^-3 ,and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43%, 8.5 × 10^-3 , and 200kHz at 238K.
文摘Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.
基金supported by the National Natural Science Foundation of China(No.11374105)
文摘In this paper, we present a stable single-photon detection method based on Si-avalanche photodiode(Si-APD) operating in Geiger mode with a large temperature variation range. By accurate temperature sensing and direct current(DC) bias voltage compensation, the single-photon detector can work stably in Geiger mode from-40 °C to 35 °C with an almost constant avalanche gain. It provides a solution for single-photon detection at outdoor operation in all-weather conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61076094,11072218,and 11272287Zhejiang Provincial Natural Science Foundation of China under Grant No. Y6110314Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y200909693
文摘In the famous quantum communication scheme developed by Duan et al.[L.M.Duan,M.D.Lukin,J.I.Cirac,and P.Zoller,Nature(London) 414(2001) 413],the probability of successful generating a symmetric collective atomic state with a single-photon emitted have to be far smaller than 1 to obtain an acceptable entangled state.Based on strong dipole-dipole interaction between two Rydberg atoms,two simultaneous excitations in an atomic ensemble are greatly suppressed,which makes it possible to excite a mesoscopic cold atomic ensemble into a near-ideal singly-excited symmetric collective state accompanied by a signal-photon with near unity success probability.