The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,...The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.展开更多
A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaA...A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2 : 1 with a peak current density of 22. 5kA/cm^2. The HEMT has a 1μm gate length with a - 1V threshold voltage. A logic circuit called a monostable-to-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.展开更多
文摘The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr Sommerfeld quantization rule yields the exact expression for the energy spectrum.
文摘A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2 : 1 with a peak current density of 22. 5kA/cm^2. The HEMT has a 1μm gate length with a - 1V threshold voltage. A logic circuit called a monostable-to-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.