【目的】研究树冠信息估测出林分密度、生长量等森林调查指标,判断林木生长优良状况提供参考,【方法】基于无人机遥感影像,以新疆农业大学实习林场主伐迹地下天山云杉林(Picea Schrenkiana var tianshanica)为研究对象,采用高斯-拉普拉...【目的】研究树冠信息估测出林分密度、生长量等森林调查指标,判断林木生长优良状况提供参考,【方法】基于无人机遥感影像,以新疆农业大学实习林场主伐迹地下天山云杉林(Picea Schrenkiana var tianshanica)为研究对象,采用高斯-拉普拉斯算子(Laplacian of Gaussian,LOG)结合最大类间方差寻找最优阈值(Otsu)对影像进行处理,并利用标记控制分水岭分割方法分别提取疏、中、密3种不同郁闭度的天山云杉单木树冠信息。【结果】利用优化后的标记控制分水岭分割方法较好的解决了过分割问题,对单木树冠信息提取的F测度在疏、中、密林区分别是98.26%、92.91%和87.57%。【结论】使用的方法提取单木树冠信息精度较高,可以评价对天山云杉林的生长状况,可对主伐迹地下天山云杉林的更新和恢复提供可靠的技术支撑。展开更多
文摘【目的】研究树冠信息估测出林分密度、生长量等森林调查指标,判断林木生长优良状况提供参考,【方法】基于无人机遥感影像,以新疆农业大学实习林场主伐迹地下天山云杉林(Picea Schrenkiana var tianshanica)为研究对象,采用高斯-拉普拉斯算子(Laplacian of Gaussian,LOG)结合最大类间方差寻找最优阈值(Otsu)对影像进行处理,并利用标记控制分水岭分割方法分别提取疏、中、密3种不同郁闭度的天山云杉单木树冠信息。【结果】利用优化后的标记控制分水岭分割方法较好的解决了过分割问题,对单木树冠信息提取的F测度在疏、中、密林区分别是98.26%、92.91%和87.57%。【结论】使用的方法提取单木树冠信息精度较高,可以评价对天山云杉林的生长状况,可对主伐迹地下天山云杉林的更新和恢复提供可靠的技术支撑。