提出一种基于变化稀疏表示的单样本人脸识别算法,将测试图像相对于某一标准图像的人脸变化表示为类内及类间变化的线性组合,通过求解最小L1范数得到线性组合的稀疏表示系数。识别时,对应于类间变化字典中最大稀疏表示系数的变化样本给...提出一种基于变化稀疏表示的单样本人脸识别算法,将测试图像相对于某一标准图像的人脸变化表示为类内及类间变化的线性组合,通过求解最小L1范数得到线性组合的稀疏表示系数。识别时,对应于类间变化字典中最大稀疏表示系数的变化样本给出了测试图像的身份信息。算法在公共测试库Extended Yale Face Database B上的实验结果证明,该算法在得到优于或相近于ESRC及ELRC识别率的同时,运算时间少于ESRC及ELRC算法。展开更多
A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric qu...A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region,which may be positive or negative.The CSQPIM model is obtained by combining the positive and negative CSQPIM units.Then,the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units.The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face.Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier,which can create the CSQPIM image-based classification(CSQPIMC).Furthermore,the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model.Finally,the experimental results on the Extended Yale B,CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.展开更多
文摘提出一种基于变化稀疏表示的单样本人脸识别算法,将测试图像相对于某一标准图像的人脸变化表示为类内及类间变化的线性组合,通过求解最小L1范数得到线性组合的稀疏表示系数。识别时,对应于类间变化字典中最大稀疏表示系数的变化样本给出了测试图像的身份信息。算法在公共测试库Extended Yale Face Database B上的实验结果证明,该算法在得到优于或相近于ESRC及ELRC识别率的同时,运算时间少于ESRC及ELRC算法。
基金The National Natural Science Foundation of China(No.61802203)the Natural Science Foundation of Jiangsu Province(No.BK20180761)+1 种基金China Postdoctoral Science Foundation(No.2019M651653)Postdoctoral Research Funding Program of Jiangsu Province(No.2019K124).
文摘A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region,which may be positive or negative.The CSQPIM model is obtained by combining the positive and negative CSQPIM units.Then,the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units.The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face.Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier,which can create the CSQPIM image-based classification(CSQPIMC).Furthermore,the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model.Finally,the experimental results on the Extended Yale B,CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.