Here, we report a method that uses gold nanoparticles (AuNPs) to enhance the specificity of DNA hybridization without reducing its detection sensitivity. The conventional stringent wash method utilizes high-temperat...Here, we report a method that uses gold nanoparticles (AuNPs) to enhance the specificity of DNA hybridization without reducing its detection sensitivity. The conventional stringent wash method utilizes high-temperatureflow-salt conditions to enhance the specificity of DNA hybridization-based assays. This method creates a destabilizing environment for base pairing that affects specific and nonspecific duplexes. Therefore, specificity is achieved at the expense of signal intensity or sensitivity. However, in the proposed wash method, AuNPs predominantly destabilize nonspecific duplexes, offering specificity without compromising sensitivity. This AuNP wash technique has proven to be effective in detecting single nucleotide polymorphisms (SNPs) in genomic samples even at room temperature in a CD-like NanoBioArray (CD-NBA) chip. This method is also robust with sequence variation and is compatible with multiplex DNA analyses on microarrays. Thus, the AuNP wash method could potentially be useful for improving the accuracy of DNA hybridization results.展开更多
文摘Here, we report a method that uses gold nanoparticles (AuNPs) to enhance the specificity of DNA hybridization without reducing its detection sensitivity. The conventional stringent wash method utilizes high-temperatureflow-salt conditions to enhance the specificity of DNA hybridization-based assays. This method creates a destabilizing environment for base pairing that affects specific and nonspecific duplexes. Therefore, specificity is achieved at the expense of signal intensity or sensitivity. However, in the proposed wash method, AuNPs predominantly destabilize nonspecific duplexes, offering specificity without compromising sensitivity. This AuNP wash technique has proven to be effective in detecting single nucleotide polymorphisms (SNPs) in genomic samples even at room temperature in a CD-like NanoBioArray (CD-NBA) chip. This method is also robust with sequence variation and is compatible with multiplex DNA analyses on microarrays. Thus, the AuNP wash method could potentially be useful for improving the accuracy of DNA hybridization results.